The conversion of a high-energy photon into two excitons using singlet fission (SF) has stimulated a variety of studies in fields from fundamental physics to device applications. However, efficient SF has only been achieved in limited systems, such as solid crystals and covalent dimers. Here, we established a novel system by assembling 4-(6,13-bis(2-(triisopropylsilyl)ethynyl)pentacen-2-yl)benzoic acid (Pc) chromophores on nanosized CdTe quantum dots (QDs). A near-unity SF (198 ± 5.7%) initiated by interfacial resonant energy transfer from CdTe to surface Pc was obtained. The unique arrangement of Pc determined by the surface atomic configuration of QDs is the key factor realizing unity SF. The triplet-triplet annihilation was remarkably suppressed due to the rapid dissociation of triplet pairs, leading to long-lived free triplets. In addition, the low light-harvesting ability of Pc in the visible region was promoted by the efficient energy transfer (99 ± 5.8%) from the QDs to Pc. The synergistically enhanced light-harvesting ability, high triplet yield, and long-lived triplet lifetime of the SF system on nanointerfaces could pave the way for an unmatched advantage of SF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c04731 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!