Sheep have been used as translational models of human postnatal testicular development. However, the morphometric features of the normal developing testis in sheep embryos have not been previously investigated using stereology. The objective of the present work was to establish normal quantitative parameters for fetal testicular tissue components in sheep, using unbiased design-based stereological methods. Twenty-four sheep embryos were divided into four gestational age groups (9-11, 12-14, 15-17 and 18-20 weeks of gestation) on the basis of the embryos' crown-rump length. Isotropic, systematic uniform random sections of the left testes were obtained by employing the orientator method. Testicular total volume, the absolute and proportional volumes occupied by the seminiferous tubules and interstitial tissue, as well as the seminiferous tubule length, were estimated using the point-counting system and the unbiased counting frame principle. All the parameters, with the exception of the interstitial tissue's fractional volume, gradually increased along with gestational age, with the maximum increase especially seen in the late fetal stages. The proportional volume of the interstitial tissue, on the other hand, showed a decreasing trend along with increasing gestational age. The absolute volume of the testes, of the seminiferous tubules and of the interstitial tissue, and the length of the seminiferous tubules showed a significant (p< 0.05) positive linear correlation with gestational age. Several similarities were observed with human testicular embryogenesis. The stereological data emerging from the present study might prove useful as basic contribution to the fields of andrology and embryology and stimulate further research in these areas.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ahe.12746DOI Listing

Publication Analysis

Top Keywords

sheep embryos
12
gestational age
12
seminiferous tubules
12
interstitial tissue
12
testis sheep
8
unbiased design-based
8
tubules interstitial
8
sheep
5
morphometric study
4
study testis
4

Similar Publications

Oxidative stress is a significant factor in the death of granulosa cells (GCs), leading to follicular atresia and consequently limiting the number of dominant follicles that can mature and ovulate within each follicular wave. Follicular fluid contains a diverse array of metabolites that play crucial roles in regulating GCs' proliferation and oocyte maturation, which are essential for follicle development and female fertility. However, the mechanisms behind metabolite heterogeneity and its effects on GCs' function remain poorly understood.

View Article and Find Full Text PDF

Inhibin β-A (), a TGF-β superfamily member, is crucial for developing follicles. Although miRNAs are essential for post-transcriptional gene regulation, it is not yet known how they affect the expression of during follicle development. Using bioinformatics analyses, miR-134-3p was found, in this investigation, to be a crucial microRNA that targets in sheep GCs.

View Article and Find Full Text PDF

Supplementation with N-Acetyl-L-cysteine during in vitro maturation improves goat oocyte developmental competence by regulating oxidative stress.

Theriogenology

January 2025

Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China. Electronic address:

Oocyte quality can affect mammal fertilization rate, early embryonic development, pregnancy maintenance, and fetal development. Oxidative stress induced by reactive oxygen species (ROS) is one of the most important causes of poor oocyte maturation in vitro. To reduce the degree of cellular damage caused by ROS, supplementation with the antioxidant N-Acetyl-L-cysteine (NAC) serves as an effective pathway to alleviate glutathione (GSH) depletion during oxidative stress.

View Article and Find Full Text PDF

Background: A proper placentation is required for establishment and continuity of pregnancy. In sheep, placentomes are unique structures that enable nutrition and gas exchange between the mother and the foetus. Although placentomes are dynamic formations, there is limited knowledge of changes in placentomes during pregnancy.

View Article and Find Full Text PDF

Chlorogenic acid (CGA) has strong antioxidant properties. In order to improve the low maturation rate and poor vitrification freezing effect of sheep oocytes caused by oxidative stress. In this study, oocytes from 200 2-3-year-old Kazakh sheep were collected, and different concentrations of CGA were added to the maturation medium and vitrification freezing solution to study the effects of CGA on the maturation rate, cleavage rate, blastocyst rate, reactive oxygen species (ROS) and glutathione (GSH) levels, mitochondrial membrane potential, and the expression levels of oxidation and apoptosis-related genes in sheep oocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!