Background: The objective was to study targeted therapies using a biologically active monoclonal antibody against intracellular adhesion molecule-1 (ICAM-1 mAb) and an siRNA targeting thyroid-stimulating hormone (TSH) receptor (TSHR) in a BALB/c mouse model of Graves' disease (GD).
Material And Methods: An improved method for establishing a stable model of GD in BALB/c mice was developed by immunization with pcDNA 3.1/TSHR 289 and electroporation (EP). The mice in which GD was successfully established were divided into a nontreated control group, which was treated with continuous immunization, and treated groups, which were treated with the siRNA and ICAM-1 mAb. Normal mice were included as a blank group. These groups were used to compare the effects of treatment with the ICAM-1 mAb and siRNA.
Results: The two novel treatments markedly improved weight loss, serum thyroxine (T4) levels, thyroid-stimulating hormone antibody (TSAb) levels, thyroid-stimulating blocking antibody (TSBAb) levels and thyroid uptake of 99mTcO4 in GD model mice. Compared with the siRNA treatment, treatment with the ICAM-1 mAb produced more obvious benefits. The differences in the posttreatment indexes between the two treatment groups were statistically significant (p < 0.05).
Conclusions: These preliminary data suggest that both the biologically active ICAM-1 mAb and the siRNA targeting TSHR were effective. The ICAM-1 mAb exerted a better therapeutic effect than the siRNA targeting TSHR. Both treatments showed potential efficacy as novel treatments for GD and may therefore represent therapeutic options in addition to the existing drugs or interventions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5603/EP.a2021.0087 | DOI Listing |
J Cell Biochem
May 2024
Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan.
High glucose (HG)-induced endothelial cell (EC) and smooth muscle cell (SMC) dysfunction is critical in diabetes-associated atherosclerosis. However, the roles of heme oxygenase-1 (HO-1), a stress-response protein, in hemodynamic force-generated shear stress and HG-induced metabolic stress remain unclear. This investigation examined the cellular effects and mechanisms of HO-1 under physiologically high shear stress (HSS) in HG-treated ECs and adjacent SMCs.
View Article and Find Full Text PDFInt J Mol Sci
October 2023
Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
Blood
November 2023
Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN.
Vaso-occlusive pain episodes (VOE) cause severe pain in patients with sickle cell disease (SCD). Vaso-occlusive events promote ischemia/reperfusion pathobiology that activates complement. We hypothesized that complement activation is linked to VOE.
View Article and Find Full Text PDFFront Immunol
June 2023
Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea.
Interleukin-32 (IL-32), first reported in 2005, and its isoforms have been the subject of numerous studies investigating their functions in virus infection, cancer, and inflammation. IL-32θ, one of the IL-32 isoforms, has been shown to modulate cancer development and inflammatory responses. A recent study identified an IL-32θ mutant with a cytosine to thymine replacement at position 281 in breast cancer tissues.
View Article and Find Full Text PDFJ Cell Mol Med
June 2023
Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan.
Human oral squamous cell carcinoma (OSCC) has been associated with a relatively low survival rate over the years and is characterized by a poor prognosis. C-X3-C motif chemokine ligand 1 (CX3CL1) has been involved in advanced migratory cells. Overexpressed CX3CL1 promotes several cellular responses related to cancer metastasis, including cell movement, migration and invasion in tumour cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!