Muscle atrophy, or a decline in muscle protein mass, is a significant problem in the aging population and in numerous disease states. Unraveling molecular signals that trigger and promote atrophy may lead to a better understanding of treatment options; however, there is no single cause of atrophy identified to date. To gain insight into this problem, we chose to investigate changes in protein profiles during muscle atrophy in Manduca sexta and Drosophila melanogaster. The use of insect models provides an interesting parallel to probe atrophic mechanisms as these organisms undergo a normal developmental atrophy process during the pupal transition stage. Leveraging the inherent advantages of each model organism, we first defined protein signature changes during M. sexta intersegmental muscle (ISM) atrophy and then used genetic approaches to confirm their functional importance in the D. melanogaster dorsal internal oblique muscles (DIOMs). Our data reveal an upregulation of proteasome and peptidase components and a general downregulation of proteins that regulate actin filament formation. Surprisingly, thick filament proteins that comprise the A-band are increased in abundance, providing support for the ordered destruction of myofibrillar components during developmental atrophy. We also uncovered the actin filament regulator ciboulot (Cib) as a novel regulator of muscle atrophy. These insights provide a framework towards a better understanding of global changes that occur during atrophy and may eventually lead to therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627571 | PMC |
http://dx.doi.org/10.1242/jeb.242698 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!