In hydrodynamics, the event of dynamic bubble growth in a pure liquid under tensile pressure is known as cavitation. The same event can also be observed in soft materials (, elastomers and hydrogels). However, for soft materials, bubble/cavity growth is either defined as cavitation if the bubble growth is elastic and reversible or as fracture if the cavity growth is by material failure and irreversible. In any way, bubble growth can cause damage to soft materials (, tissue) by inducing high strain and strain-rate deformation. Additionally, a high-strength pressure wave is generated upon the collapse of the bubble. Therefore, it is crucial to identify the critical condition of spontaneous bubble growth in soft materials. Experimental and theoretical observations have agreed that the onset of bubble growth in soft materials requires higher tensile pressure than pure water. The extra tensile pressure is required since the cavitating bubble needs to overcome the elastic and surface energy in soft materials. In this manuscript, we developed two models to study and quantify the extra tensile pressure for different gelatin concentrations. Both the models are then compared with the existing cavitation onset criteria of rubber-like materials. Validation is done with the experimental results of threshold tensile pressure for different gelatin concentrations. Both models can moderately predict the extra tensile pressure within the intermediate range of gelatin concentrations (3-7% [w/v]). For low concentration (∼1%), the network's non-affinity plays a significant role and must be incorporated. On the other hand, for higher concentrations (∼10%), the entropic deformation dominates, and the strain energy formulation is not adequate.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1sm00587aDOI Listing

Publication Analysis

Top Keywords

bubble growth
24
tensile pressure
24
soft materials
24
extra tensile
12
gelatin concentrations
12
bubble
8
growth
8
growth soft
8
pressure gelatin
8
concentrations models
8

Similar Publications

Article Synopsis
  • Polymers are being studied as eco-friendly alternatives to fluorinated foam extinguishing agents, focusing on how they affect the performance of non-fluorinated foams.
  • The research examines the impact of xanthan gum, sodium carboxymethyl cellulose, and gelatin on various properties such as viscosity, conductivity, and foam stability of a specific siloxane-based mixture.
  • Results indicate that while the polymers increased viscosity and conductivity, they also decreased foamability, with gelatin enhancing surface activity and contributing to prolonged drainage times and film stability.
View Article and Find Full Text PDF

Effect of ultrafine CO2 bubbles on Euglena gracilis Z growth with CO2 gas bubble size and chlorophyll content.

Biosci Biotechnol Biochem

December 2024

Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Central Ward, Hamamatsu, Shizuoka, Japan.

Microalgae have been explored as a viable alternative food source. Among them, Euglena gracilis stands out as a promising single-cell algae. However, the challenge lies in developing more efficient and cost-effective methods for industrial mass production of Euglena gracilis under controlled culture conditions.

View Article and Find Full Text PDF

Toward Green Liquid Nitrogen Fertilizer Synthesis: Plasma-Driven Nitrogen Oxidation and Partial Electrocatalytic Reduction.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Liquid fertilizers, particularly when integrated with precision irrigation systems, offer a more efficient and sustainable alternative to traditional solid nitrogen fertilizers. The industrial production of ammonium nitrate (NHNO) is environmentally detrimental due to its reliance on fossil fuels. This study introduces an innovative air-to-NOx-to-NHNO pathway for synthesizing liquid nitrogen fertilizer.

View Article and Find Full Text PDF

Silicone gel, used in the packaging of high-voltage, high-power semiconductor devices, generates bubbles during the packaging process, which accelerates the degradation of its insulation properties. This paper establishes a testing platform for electrical treeing in silicone gel under pulsed electric fields, investigating the effect of pulse voltage amplitude on bubble development and studying the initiation and growth of electrical treeing in a silicone gel with different pulse edge times. The relationship between bubbles and electrical treeing in silicone gel materials is discussed.

View Article and Find Full Text PDF

This study explores the bubble nucleation process and heat transfer characteristics on nanostructured solid surfaces with mixed-wettable pillars using molecular dynamics simulations. Five different surfaces were designed by varying the wettability of the central pillars while keeping the lateral pillars hydrophilic. The nucleation behavior of argon bubbles was observed to differ significantly across these surfaces due to the combined effects of nanostructuring and mixed wettability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!