Objective: To characterize the association between peritoneopericardial diaphragmatic hernia (PPDH) or congenital central diaphragmatic hernia (CCDH) and ductal plate malformations (DPMs) in dogs and cats.
Animals: 18 dogs and 18 cats with PPDH or CCDH and 19 dogs and 18 cats without PPDH or CCDH.
Procedures: Evaluation of clinical details verified PPDH or CCDH and survival times. Histologic features of nonherniated liver samples were used to categorize DPM. Immunohistochemical staining for cytokeratin-19 distinguished bile duct profiles per portal tract and for Ki-67-assessed cholangiocyte proliferation. Histologic features of herniated liver samples from PPDH or CCDH were compared with those of pathological controls (traumatic diaphragmatic hernia, n = 6; liver lobe torsion, 6; ischemic hepatopathy, 2).
Results: DPM occurred in 13 of 18 dogs with the proliferative-like phenotype predominating and in 15 of 18 cats with evenly distributed proliferative-like and Caroli phenotypes. Congenital hepatic fibrosis DPM was noted in 3 dogs and 2 cats and renal DPM in 3 dogs and 3 cats. No signalment, clinical signs, or clinicopathologic features discriminated DPM. Kaplan Meier survival curves were similar in dogs and cats. Bile duct profiles per portal tract in dogs (median, 5.0; range, 1.4 to 100.8) and cats (6.6; 1.9 to 11.0) with congenital diaphragmatic hernias significantly exceeded those in healthy dogs (1.4; 1.2 to 1.6) and cats (2.3; 1.7 to 2.6). Animals with DPM lacked active cholangiocyte proliferation. Histologic features characterizing malformative bile duct profiles yet without biliary proliferation were preserved in herniated liver lobes in animals with DPM.
Conclusions And Clinical Relevance: DPM was strongly associated with PPDH and CCDH. Because DPM can impact health, awareness of its coexistence with PPDH or CCDH should prompt biopsy of nonherniated liver tissue during surgical correction of PPDH and CCDH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2460/javma.259.9.1009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!