LINC00662 is located on chromosome 19q11 and is 2085 bp long. It is a long noncoding RNA (lncRNA) newly discovered. LINC00662 expression is upregulated in at least 14 tumors. In addition, the upregulation of LINC00662 expression is also closely related to the poor prognosis of cancer patients and resistance to radiotherapy and chemotherapy. LINC00662 can act as a ceRNA of at least 8 miRNAs. By regulating these miRNAs and their downstream genes, LINC00662 participates in the regulation of four signaling pathways, including the extracellular signal-regulated kinase (ERK) signaling pathway, the Wnt/β-catenin signaling pathway, the Hippo signaling pathway, and the SMD signaling pathway. In addition, the abnormal upregulation of LINC00662 can promote the stem-like features of lung cancer cells. LINC00662 can reduce the promoter methylation level of s-adenosylmethionine (SAM)-dependent hepatocellular carcinoma (HCC)-promoting genes by regulating the MAT1A/SAM and AHCY/SAH axes, thereby promoting the activation of oncogenes. This article summarizes the molecular regulation mechanism of LINC00662 in cancer and the diagnostic and prognostic value of LINC00662 in cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.30599 | DOI Listing |
JCO Precis Oncol
January 2025
Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.
View Article and Find Full Text PDFIndian J Pathol Microbiol
October 2024
Department of Pathology, Sichuan Taikang Hospital, Chengdu, China.
Objective: To explore more and better liquid biopsy markers of exosomal microRNAs (exo-miRNAs) in renal interstitial fibrosis (RIF) and to preliminary investigate the biological functions and signaling pathways involved in these markers.
Materials And Methods: High-throughput miRNA sequencing was performed on blood and urine exo-miRNAs from three RIF patients and three healthy volunteers, and differential expression analysis and bioinformatic processing were performed.
Results: There were 13 differentially expressed exo-miRNA (DEexo-miRNA) between RIF and healthy blood, and 20 DEexo-miRNAs in urine.
ACS Nano
January 2025
Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China.
The extracellular matrix (ECM) stores signaling molecules and facilitates mechanical and biochemical signaling in cells. However, the influence of biomimetic "rejuvenation" ECM structures on aging- and degeneration-related cellular activities and tissue repair is not well understood. We combined physical extrusion and precise "on-off" alternating cross-linking methods to create anisotropic biomaterial microgels (MicroRod and MicroSphere) and explored how they regulate the cell activities of the nucleus pulposus (NP) and their potential antidegenerative effects on intervertebral discs.
View Article and Find Full Text PDFJ Med Chem
January 2025
Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China.
Protein arginine methyltransferase 5 (PRMT5), which catalyzes the symmetric dimethylation of arginine residues on target proteins, plays a critical role in gene expression regulation, RNA processing, and signal transduction. Aberrant PRMT5 activity has been implicated in cancers and other diseases, making it a potential therapeutic target. Here, we report the discovery of a methylthioadenosine (MTA) cooperative PRMT5 inhibitor.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Oncology, Peking University First Hospital, Taiyuan Hospital, Taiyuan, Shanxi, China.
This work established the cytotoxic, antioxidant and anticancer effects of copper nanoparticles (CuNPs) manufactured with fennel extract, especially on non-small cell lung cancer (NSCLC) as well. CuNPs caused cytotoxicity in a dose-dependent manner for two NSCLC cell lines, A549 and H1650. At 100 μg/ml, CuNPs reduced cell viability to 70% in A549 cells and 65% in H1650 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!