Conducting Plant Experiments in Space and on the Moon.

Methods Mol Biol

Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA.

Published: January 2022

The growth and development of plants during spaceflight have important implications for both basic and applied research supported by NASA and other international space agencies. While there have been many reviews of plant space biology, this chapter attempts to fill a gap in the literature on the actual process and methods of performing plant research in the spaceflight environment. One of the authors (JZK) has been a principal investigator on eight spaceflight projects. These experiences include using the U.S. Space Shuttle, the former Russian Space Station Mir, and the International Space Station, utilizing the Space Shuttle and Space X as launch vehicles. While there are several ways to fly an experiment into space and to obtain a spaceflight opportunity, this review focuses on using the NASA peer-reviewed sciences approach to get an experiment manifested for flight. Three narratives for the implementation of plant space biology experiments are considered from rapid turn around of a few months to a project with new hardware development that lasted 6 years. The many challenges of spaceflight research include logistical and resource constraints such as crew time, power, cold stowage, data downlinks, among others. Additional issues considered are working at NASA centers, hardware development, safety concerns, and the engineering versus science culture in space agencies. The difficulties of publishing the results from spaceflight research based on such factors as the lack of controls, limited sample size, and the indirect effects of the spaceflight environment also are summarized. Lessons learned from these spaceflight experiences are discussed in the context of improvements for future space-based research projects with plants. We also will consider new opportunities for Moon-based research via NASA's Artemis lunar exploration program.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1677-2_12DOI Listing

Publication Analysis

Top Keywords

space
11
spaceflight
8
international space
8
space agencies
8
plant space
8
space biology
8
spaceflight environment
8
space shuttle
8
space station
8
hardware development
8

Similar Publications

Background: A 71-year-old male presented with weakness of the right upper limb and headache for the past 3 months. Brain magnetic resonance imaging (MRI) with contrast showed a left frontal space-occupying lesion, suggestive of a high-grade malignancy. Awake craniotomy with complete excision of the lesion was performed under immunofluorescence guidance.

View Article and Find Full Text PDF

Objectives: The aim of this technical report was to assess whether the "Radiological Report" tool within the Artificial Intelligence (AI) software Diagnocat can achieve a satisfactory level of performance comparable to that of experienced dentomaxillofacial radiologists in interpreting cone-beam CT scans.

Methods: Ten cone-beam CT scans were carefully selected and analyzed using the AI tool, and they were also evaluated by two dentomaxillofacial radiologists. Observations related to tooth numeration, alterations in dental crowns, roots, and periodontal tissues were documented and subsequently compared to the AI findings.

View Article and Find Full Text PDF

Background: Current research on digital applications to support the mental health and well-being of foster youth is limited to theoretical applications for transition-aged foster youth and support platforms developed without intentional input from foster youth themselves. Centering the lived expertise of foster youth in digital solutions is crucial to dismantling barriers to care, leading to an increase in service access and improving mental health outcomes. Co-design centers the intended end users during the design process, creating a direct relationship between potential users and developers.

View Article and Find Full Text PDF

Purpose: Pulmonary perfusion imaging is a key lung health indicator with clinical utility as a diagnostic and treatment planning tool. However, current nuclear medicine modalities face challenges like low spatial resolution and long acquisition times which limit clinical utility to non-emergency settings and often placing extra financial burden on the patient. This study introduces a novel deep learning approach to predict perfusion imaging from non-contrast inhale and exhale computed tomography scans (IE-CT).

View Article and Find Full Text PDF

Prostaglandin E2 (PGE-2) is synthesised by cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1). PGE-2 exhibits pro-inflammatory properties in inflammatory conditions. However, there remains limited understanding of the COX-2/mPGES-1/PGE-2 pathway in Angiostrongylus cantonensis-induced meningoencephalitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!