Background: Burn shock caused by vascular leakage is one of the main causes of high mortality in severe burn injury. However, the pathophysiological mechanism of vascular leakage is still unclear. The purpose of this study was to explore the molecular mechanism of vascular leakage in the early stage of severe burn and provide a new target for the treatment of severe burns.

Methods: Neutrophils were isolated from human peripheral blood by magnetic beads sorting. ELISA was used to detect neutrophil-derived granule proteins and glycocalyx injury products in plasma. The vascular leakage and neutrophil movement were assessed by laser confocal imaging in mice, and high-quality video were provided.. Adhesion-related molecules were investigated by qRT-PCR. The damage to glycocalyx of mice vascular endothelial cells was observed by transmission electron microscope and scanning electron microscope. Proteomic analysis, flow cytometry and immunofluorescence were used to further study the relationship between human peripheral blood neutrophil-derived hypochlorite (HOCl) and CD44 of human vascular endothelial cells.

Results: In this study, we found that rapidly increasing activated neutrophils secrete heparin binding protein (HBP) and myeloperoxidase (MPO) after severe burn injury. Increased HBP triggers vascular leakage with synergy of MPO, results in systemic edema and burn shock. Furthermore, we found that the MPO catalytic product HOCl but not MPO triggers CD44 extracellular domain shedding from vascular endothelial cells to damage the glycocalyx. Damage to the glycocalyx results in firm adhesion of neutrophils and increases vascular leakage. However, MPO inhibitors partially protect the glycocalyx of vascular endothelial cells. The combination of HBP and MPO inhibitors markedly reduces vascular leakage and systemic edema in the early stage of severe burns.

Conclusions: Taken together, these data reveal that neutrophil-derived HBP and MPO play an important synergies role in triggering vascular leakage at the early stage of severe burns. Targeted intervention in these two biomolecules may introduce new strategies for helping to reduce large amount of fluid loss and subsequent burn shock.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8499692PMC
http://dx.doi.org/10.1093/burnst/tkab030DOI Listing

Publication Analysis

Top Keywords

vascular leakage
36
early stage
16
stage severe
16
vascular endothelial
16
vascular
13
burn shock
12
severe burn
12
damage glycocalyx
12
endothelial cells
12
leakage
9

Similar Publications

Machine learning and deep learning to improve prevention of anastomotic leak after rectal cancer surgery.

World J Gastrointest Surg

January 2025

Department of Minimally Invasive Digestive Surgery, Antoine-Béclère Hospital, Assistance Publique-Hôpitaux de ParisClamart 92140, Haute-Seine, France.

Anastomotic leakage (AL) is a significant complication following rectal cancer surgery, adversely affecting both quality of life and oncological outcomes. Recent advancements in artificial intelligence (AI), particularly machine learning and deep learning, offer promising avenues for predicting and preventing AL. These technologies can analyze extensive clinical datasets to identify preoperative and perioperative risk factors such as malnutrition, body composition, and radiological features.

View Article and Find Full Text PDF

Introduction: Altered vascular microcirculation is recognized as a risk factor for anastomotic leakage (AL) in colorectal surgery. However, few studies evaluated its impact on AL using different devices, with heterogeneous results. The present study reported the initial experience measuring gut microcirculatory density and flow with the aid of incidence dark-field (IDF) videomicroscopy (Cytocam, Braedius, Amsterdam, The Netherlands) comparing its operative outcome using a propensity score matching (PSM) model based on age, gender, and Charlson Comorbidity Index (CCI).

View Article and Find Full Text PDF

In modern war theaters, exposures to blast overpressures are one of the most common causes of brain injury. These pervasive events result in acute and chronic cerebrovascular degenerative processes. Using a rat model of blast-induced mild traumatic brain injury, we identified intramural periarterial hematomas as early primary acute lesions induced by blast exposures.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

A potential two-way passage of cells and substances between the brain and skull bone marrow may open for new insights into neurological disease. The arachnoid membrane was traditionally considered to restrict cells and larger molecules in CSF from entering the dura and bone marrow directly. However, new data on exchange between brain and skull bone marrow have recently emerged.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!