A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vitro study of the effect of quinoa and quinoa polysaccharides on human gut microbiota. | LitMetric

AI Article Synopsis

  • This study investigates the prebiotic effects of quinoa seeds and quinoa polysaccharides, focusing on how they impact gut microbiota after being digested in a lab setup that simulates human digestion.* -
  • The results showed that cooked quinoa had a digestibility rate of 69.04%, and both cooked and uncooked quinoa, along with quinoa polysaccharides, produced significant amounts of short-chain fatty acids (SCFAs) during fermentation.* -
  • Analysis indicated that quinoa substrates promote the growth of beneficial gut bacteria, suggesting that quinoa and its polysaccharides could serve as effective prebiotics, warranting further research on their health benefits.*

Article Abstract

It has been shown that whole grains and dietary fiber are important for their fermentation characteristics in the large intestine, drawing more and more attention to quinoa and quinoa polysaccharides. In this study, we evaluated the prebiotic effect of quinoa seeds and quinoa polysaccharides after human simulated digestion. The modulatory effect of the quinoa and quinoa polysaccharides (QPs) on the gut microbiota was evaluated by the in vitro fermentation using human fecal microbiota. The yield of polysaccharides extraction was 15.45%. The digestibility of the cooked and uncooked quinoa after simulation of human digestion was 69.04% and 64.09%, respectively. The effect on the microbiota composition and their metabolic products was determined by the assessment of pH, short-chain fatty acids (SCFAs), and changes in the bacterial population. After 24 hr anaerobic incubation, the total SCFAs of cooked, uncooked quinoa, and quinoa polysaccharides were 82.99, 77.11, and 82.73 mM, respectively with a pH decrease. At the phylum, genus, and class level, it has been found that the quinoa substrates enhance the growth of certain beneficial bacteria such as . Quinoa polysaccharides can be considered prebiotic due to their ability to increase and . Principal component analysis (PCA) showed that there was a distinct modulating effect on the fecal microbiota which represents different distribution. Our research suggests that quinoa and quinoa polysaccharides have a prebiotic potential due to their association with the positive shifts in microbiota composition and short-chain fatty acids production, which highlights the importance of further studies around this topic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8498072PMC
http://dx.doi.org/10.1002/fsn3.2540DOI Listing

Publication Analysis

Top Keywords

quinoa polysaccharides
28
quinoa quinoa
20
quinoa
15
polysaccharides
8
polysaccharides human
8
gut microbiota
8
fecal microbiota
8
cooked uncooked
8
uncooked quinoa
8
microbiota composition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!