We studied the impact of flooding and light availability gradients on sexual and asexual reproduction in (Walt.) Blume, an endangered shrub found in floodplain forests of the Mississippi Alluvial Valley (MAV), USA. A water impoundment facility was used to control the duration of soil flooding (0, 45, or 90 days), and shade houses were used to control light availability (high = 72%, intermediate = 33%, or low = 2% of ambient light) received by established on native soil of the MAV. Sexual reproductive intensity, as measured by inflorescence bud count, fruit set, and drupe production, was greatest in the absence of soil flooding. Ninety days of soil flooding in the year prior to anthesis decreased inflorescence bud counts, and 45 days of soil flooding in the year of anthesis lessened fruit set and drupe production. Inflorescence bud development was the greatest in environments of intermediate light, decreased in high-light environments, and was absent in low light environments. But low fruit set diminished drupe production in intermediate light environments as compared to high light environments. Asexual reproduction, as measured by development of new ramets, was greatest in the absence of soil flooding and where plants were grown in high or intermediate light. Plants exhibited plasticity in reproductive mode such that soil flooding increased the relative importance of asexual reproduction. The high light environment was most favorable to sexual reproduction, and reproductive mode transitioned to exclusively asexual in the low light environment. Our results raise several implications important to active management for the conservation of this imperiled plant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8495781 | PMC |
http://dx.doi.org/10.1002/ece3.8037 | DOI Listing |
Heliyon
January 2025
Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29, Prague 6, Czech Republic.
Human activities result in sediment accumulation, so the reservoirs gradually lose their functionality, impacting their ability to manage large flood inflows, supply water, and generate hydroelectric power. Therefore, periodic removal of sediments from water reservoirs is essential to maintain functionality. Notwithstanding, the management of dredged sediments is a multifaceted process that involves careful consideration of environmental, regulatory, and economic factors to ensure their responsibility and sustainable handling.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Earth and Environmental System Sciences, Department of Oceanography, Pukyong National University, 45 Yongso-ro, Nam-gu, 48513, Busan, Republic of Korea.
This study explores carbon sequestration in South Korea's riverine wetlands, focusing on the four major rivers: Han, Yeongsan, Geum, and Nakdong. Field data from the Yeongsan River wetland, including 3D topography surveys, grainsize analyses, and loss-on-ignition measurements, were used to assess carbon stocks and their environmental drivers. The Yeongsan River was selected as a representative site due to its geomorphological, hydrological, and climatic similarities with the other three major rivers, which influence sediment transport and carbon dynamics.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China. Electronic address:
Soil bacterial communities are critical for maintaining ecosystem functions, yet the impact of water level fluctuations on ecosystem multifunctionality (EMF) and the role of bacterial communities in the lake water-level-fluctuating zone (WLFZ) remain poorly understood. This study investigated how seasonal water level fluctuations influence EMF and their relationships with soil bacterial communities through a two-year field survey. We found that soil bacterial diversity was significantly positively correlated with EMF.
View Article and Find Full Text PDFJ Environ Manage
December 2024
School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, Ellen Hutchins Building, University College Cork, Cork, Ireland.
Nature-based Solutions (NbS) are widely advocated to have multiple benefits, including in flood risk reduction, water quality improvement and ecosystem health. There are, however, few empirical studies quantifying such multi-functionality. Given the ongoing pressures of flooding and poor water quality within Europe, there is an urgent need for empirical evidence to assess the potential for NbS features to address these issues.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Geography, HPT Arts and RYK Science College, Nashik, 422 005, Maharashtra, India.
Floods are one of the most catastrophic and widespread disasters that cause loss of lives, infrastructure, livelihoods, and people. Therefore, the identification and mapping of flood-prone areas is crucial for flood disaster management. The main objective of this study is to identify and map the potential flood areas of the Wardha Basin using frequency ratio (FR) and statistical index (SI) models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!