A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improving Wheat Yield Prediction Using Secondary Traits and High-Density Phenotyping Under Heat-Stressed Environments. | LitMetric

Improving Wheat Yield Prediction Using Secondary Traits and High-Density Phenotyping Under Heat-Stressed Environments.

Front Plant Sci

Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States.

Published: September 2021

A primary selection target for wheat () improvement is grain yield. However, the selection for yield is limited by the extent of field trials, fluctuating environments, and the time needed to obtain multiyear assessments. Secondary traits such as spectral reflectance and canopy temperature (CT), which can be rapidly measured many times throughout the growing season, are frequently correlated with grain yield and could be used for indirect selection in large populations particularly in earlier generations in the breeding cycle prior to replicated yield testing. While proximal sensing data collection is increasingly implemented with high-throughput platforms that provide powerful and affordable information, efficient and effective use of these data is challenging. The objective of this study was to monitor wheat growth and predict grain yield in wheat breeding trials using high-density proximal sensing measurements under extreme terminal heat stress that is common in Bangladesh. Over five growing seasons, we analyzed normalized difference vegetation index (NDVI) and CT measurements collected in elite breeding lines from the International Maize and Wheat Improvement Center at the Regional Agricultural Research Station, Jamalpur, Bangladesh. We explored several variable reduction and regularization techniques followed by using the combined secondary traits to predict grain yield. Across years, grain yield heritability ranged from 0.30 to 0.72, with variable secondary trait heritability (0.0-0.6), while the correlation between grain yield and secondary traits ranged from -0.5 to 0.5. The prediction accuracy was calculated by a cross-fold validation approach as the correlation between observed and predicted grain yield using univariate and multivariate models. We found that the multivariate models resulted in higher prediction accuracies for grain yield than the univariate models. Stepwise regression performed equal to, or better than, other models in predicting grain yield. When incorporating all secondary traits into the models, we obtained high prediction accuracies (0.58-0.68) across the five growing seasons. Our results show that the optimized phenotypic prediction models can leverage secondary traits to deliver accurate predictions of wheat grain yield, allowing breeding programs to make more robust and rapid selections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8502926PMC
http://dx.doi.org/10.3389/fpls.2021.633651DOI Listing

Publication Analysis

Top Keywords

grain yield
40
secondary traits
24
yield
13
grain
10
wheat improvement
8
proximal sensing
8
predict grain
8
growing seasons
8
yield univariate
8
multivariate models
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!