The acidic tumor microenvironment in melanoma drives immune evasion by up-regulating cyclic adenosine monophosphate (cAMP) in tumor-infiltrating monocytes. Here we show that the release of non-toxic concentrations of an adenylate cyclase (AC) inhibitor from poly(sarcosine)-block-poly(L-glutamic acid γ-benzyl ester) (polypept(o)id) copolymer micelles restores antitumor immunity. In combination with selective, non-therapeutic regulatory T cell depletion, AC inhibitor micelles achieve a complete remission of established B16-F10-OVA tumors. Single-cell sequencing of melanoma-infiltrating immune cells shows that AC inhibitor micelles reduce the number of anti-inflammatory myeloid cells and checkpoint receptor expression on T cells. AC inhibitor micelles thus represent an immunotherapeutic measure to counteract melanoma immune escape.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514514 | PMC |
http://dx.doi.org/10.1038/s41467-021-26269-w | DOI Listing |
Int J Nanomedicine
January 2025
College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, People's Republic of China.
Background: Cancer immunotherapy has achieved great success in breast cancer treatment in recent years. The Programmed Death-1 (PD-1) /Programmed Death-Ligand 1 (PD-L1) immune checkpoint pathway is among the most studied. BMS-1166, a PD-L1 inhibitor, can interfere with PD-1 and PD-L1 interaction.
View Article and Find Full Text PDFNano Lett
January 2025
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
cGAS-STING pathway activation has attracted considerable attention in antitumor immunotherapy, but clinical outcomes lag behind expectations due to overlooked negative feedback mechanisms. Here, we determine that STING activation promotes tumor stemness, which weakens the efficacy of STING-based therapies, presenting a double-edged sword. To address this therapeutic paradox, a simple metal-phenolic polymeric micelle (HMQ) was developed, in which Mn (a STING agonist) is coordinated with quercetin (a stemness inhibitor) and hyaluronic acid (HA), to unlock the full therapeutic potential of the cGAS-STING pathway.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan.
Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP).
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.
Lipid nanoparticles (LNPs) are widely used for nucleic acid delivery but face challenges like limited targeting and accelerated blood clearance (ABC) effect. We design three ionizable oligomers (IOs) that, with polylactide-polyethylene glycol (PLA-PEG), form a potential siRNA delivery system, named Ionizable Polymeric Micelles (IPMs). The siRNA encapsulated IPMs escape from lysosomes upon cellular uptake, and silence the target gene.
View Article and Find Full Text PDFPharm Nanotechnol
December 2024
Institute for Medical Research, University of Sharjah, Sharjah United Arab Emirates.
Alzheimer's disease (AD) is an irreversible brain disorder that led to memory loss and disrupts daily life. Earlier strategies to treat AD such as acetylcholinesterase inhibitor (AChEI) drugs are not showing effectiveness due to the inability to cross the blood-brain barrier. Moreover, traditional AChEI provides limited efficacy in terms of bioavailability and solubility for treating AD treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!