The recently discovered p53-dependent DNA damage tolerance (DDT) pathway relies on its biochemical activities in DNA-binding, oligomerization, as well as complex formation with the translesion synthesis (TLS) polymerase iota (POLι). These p53-POLι complexes slow down nascent DNA synthesis for safe, homology-directed bypass of DNA replication barriers. In this study, we demonstrate that the alternative p53-isoforms p53β, p53γ, Δ40p53α, Δ133p53α, and Δ160p53α differentially affect this p53-POLι-dependent DDT pathway originally described for canonical p53α. We show that the C-terminal isoforms p53β and p53γ, comprising a truncated oligomerization domain (OD), bind PCNA. Conversely, N-terminally truncated isoforms have a reduced capacity to engage in this interaction. Regardless of the specific loss of biochemical activities required for this DDT pathway, all alternative isoforms were impaired in promoting POLι recruitment to PCNA in the chromatin and in decelerating DNA replication under conditions of enforced replication stress after Mitomycin C (MMC) treatment. Consistent with this, all alternative p53-isoforms no longer stimulated recombination, i.e., bypass of endogenous replication barriers. Different from the other isoforms, Δ133p53α and Δ160p53α caused a severe DNA replication problem, namely fork stalling even in untreated cells. Co-expression of each alternative p53-isoform together with p53α exacerbated the DDT pathway defects, unveiling impaired POLι recruitment and replication deceleration already under unperturbed conditions. Such an inhibitory effect on p53α was particularly pronounced in cells co-expressing Δ133p53α or Δ160p53α. Notably, this effect became evident after the expression of the isoforms in tumor cells, as well as after the knockdown of endogenous isoforms in human hematopoietic stem and progenitor cells. In summary, mimicking the situation found to be associated with many cancer types and stem cells, i.e., co-expression of alternative p53-isoforms with p53α, carved out interference with p53α functions in the p53-POLι-dependent DDT pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514551PMC
http://dx.doi.org/10.1038/s41419-021-04224-3DOI Listing

Publication Analysis

Top Keywords

ddt pathway
20
dna replication
12
alternative p53-isoforms
12
Δ133p53α Δ160p53α
12
dna damage
8
damage tolerance
8
biochemical activities
8
replication barriers
8
p53β p53γ
8
p53-polι-dependent ddt
8

Similar Publications

Objective: The escalating prevalence of Type-2 diabetes mellitus (T2DM) poses a significant global health challenge. Utilizing integrative proteomic analysis, this study aimed to identify a panel of potential protein markers for T2DM, enhancing diagnostic accuracy and paving the way for personalized treatment strategies.

Methods: Proteome profiles from two independent cohorts were integrated: cohort 1 composed of 10 T2DM patients and 10 healthy controls (HC), and cohort 2 comprising 87 T2DM patients and 60 healthy controls.

View Article and Find Full Text PDF

Background: Previous studies have demonstrated associations of persistent organic pollutants (POPs) with sex-related hormones; however, findings were inconsistent. Sex-specific impacts and pathways through which adiposity influences associations are not completely understood. We sought to evaluate sex-specific associations of POPs serum concentration with sex-related hormones and to explore pathways through which adiposity may modify associations.

View Article and Find Full Text PDF

Molecular dependencies and genomic consequences of a global DNA damage tolerance defect.

Genome Biol

December 2024

Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.

Background: DNA damage tolerance (DDT) enables replication to continue in the presence of fork stalling lesions. In mammalian cells, DDT is regulated by two independent pathways, controlled by the polymerase REV1 and ubiquitinated PCNA, respectively.

Results: To determine the molecular and genomic impact of a global DDT defect, we studied Pcna;Rev1 compound mutants in mouse cells.

View Article and Find Full Text PDF

Computational insights into maternal environmental pollutants and folate pathway regulation.

Reprod Toxicol

December 2024

Department of Genomic Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana 121102, India.. Electronic address:

Exposure to environmental pollutants during pregnancy can adversely affect fetal growth and postnatal development. While numerous studies have explored the interaction between environmental toxic chemicals and the folate pathway, few have examined their inhibitory effects on key targets. This computational study identified 27 maternal environmental toxicants using the Comparative Toxicogenomics Database (CTD) and analyzed them to identify their targets.

View Article and Find Full Text PDF

Introduction: Ferroptosis is a crucial process contributing to neuronal damage following intracerebral hemorrhage (ICH). Didang Tang (DDT), a traditional therapeutic, has been used clinically to manage ICH for many years, yet the molecular mechanisms by which by DDT protects neurons from ferroptosis after ICH remain elusive.

Methods: This study utilized high-performance liquid chromatography-based fingerprint analysis to characterize DDT's chemical composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!