Background: Whether HDL (high-density lipoprotein) is associated with risk of vascular brain injury is unclear. HDL is comprised of many apo (apolipoprotein) species, creating distinct subtypes of HDL.
Methods: We utilized sandwich ELISA to determine HDL subspecies from plasma collected in 1998/1999 from 2001 CHS (Cardiovascular Health Study) participants (mean age, 80 years).
Results: In cross-sectional analyses, participants with higher apoA1 in plasma and lower apoE in HDL were less likely to have prevalent covert magnetic resonance imaging-defined infarcts: odds ratio for apoA1 Q4 versus Q1, 0.68 (95% CI, 0.50-0.93), and odds ratio for apoE Q4 versus Q1, 1.36 (95% CI, 1.01-1.84). Similarly, apoA1 in the subspecies of HDL that lacked apoC3, apoJ, or apoE was inversely related to covert infarcts, and apoE in the subspecies of HDL that lacked apoC3 or apoJ was directly related to covert infarcts in prospective analyses. In contrast, the concentrations of apoA1 and apoE in the complementary subspecies of HDL that contained these apos were unrelated to covert infarcts. Patterns of associations between incident overt ischemic stroke and apoA1, apoE, and apoA1 and apoE in subspecies of HDL were similar to those observed for covert infarcts but less pronounced.
Conclusions: This study highlights HDL subspecies defined by apo content as relevant biomarkers of covert and overt vascular brain injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8960323 | PMC |
http://dx.doi.org/10.1161/STROKEAHA.121.034299 | DOI Listing |
Environ Health
December 2024
Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
Background: Existing evidence for associations of per- and polyfluoroalkyl substances (PFASs) with blood lipids, lipoproteins and apolipoproteins (apo), and coronary heart disease (CHD) risk is limited and inconsistent. This study aims to explore associations between plasma PFASs, blood lipoprotein subspecies defined by apolipoproteins, and CHD risk.
Methods: A case-control study of CHD was conducted in the Health Professionals Follow-Up Study (HPFS) and Nurses' Health Study (NHS).
Atherosclerosis
October 2024
Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
Background And Aims: The structure-function relationships of high-density lipoprotein (HDL) subpopulations are not well understood. Our aim was to examine the interrelationships between HDL particle proteome and HDL functionality in subjects with and without coronary heart disease (CHD).
Methods: We isolated 5 different HDL subpopulations based on charge, size, and apolipoprotein A1 (APOA1) content from the plasma of 33 overweight/obese CHD patients and 33 age-and body mass index (BMI)-matched CHD-free subjects.
J Am Soc Mass Spectrom
August 2024
Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States.
High-density lipoproteins (HDL) are micelle-like particles consisting of a core of triglycerides and cholesteryl esters surrounded by a shell of phospholipid, cholesterol, and apolipoproteins. HDL is considered "good" cholesterol, and its concentration in plasma is used clinically in assessing cardiovascular health. However, these particles vary in structure, composition, and therefore function, and thus can be resolved into subpopulations, some of which have specific cardioprotective properties.
View Article and Find Full Text PDFCirc Res
July 2024
Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute (V.K., Y.H., F.K., M.S.-A., J.E.K., B.S., J.W.H., T.V., K.E.B.).
Background: Individuals with type 1 diabetes (T1D) generally have normal or even higher HDL (high-density lipoprotein)-cholesterol levels than people without diabetes yet are at increased risk for atherosclerotic cardiovascular disease (CVD). Human HDL is a complex mixture of particles that can vary in cholesterol content by >2-fold. To investigate if specific HDL subspecies contribute to the increased atherosclerosis associated with T1D, we created mouse models of T1D that exhibit human-like HDL subspecies.
View Article and Find Full Text PDFSci Rep
May 2024
Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
Dyslipidaemias is the leading risk factor of several major cardiovascular diseases (CVDs), but there is still a lack of sufficient evidence supporting a causal role of lipoprotein subspecies in CVDs. In this study, we comprehensively investigated several lipoproteins and their subspecies, as well as other metabolites, in relation to coronary heart disease (CHD), heart failure (HF) and ischemic stroke (IS) longitudinally and by Mendelian randomization (MR) leveraging NMR-measured metabolomic data from 118,012 UK Biobank participants. We found that 123, 110 and 36 analytes were longitudinally associated with myocardial infarction, HF and IS (FDR < 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!