Objective: Our study aims to synthesize, characterize, and determine the effects of a ChNPs suspension on human enamel after cariogenic challenge via pH-cycling.

Methodology: ChNPs were synthesized by ion gelation and characterized by Transmission Electron Microscopy (TEM) and Dynamic Light Scattering. Forty enamel blocks were divided into four groups (n=10/group): (i) ChNPs suspension; (ii) chitosan solution; (iii) 0.05% sodium fluoride (NaF) solution; and (iv) distilled water. Specimens were exposed to cariogenic challenge by cycling in demineralization solution (3 h) and then remineralized (21h) for 7 days. Before each demineralization cycle, the corresponding solutions were passively applied for 90 s. After 7 days, specimens were examined for surface roughness (Ra) and Knoop hardness (KHN) before and after the cariogenic challenge; % KHN change (variation between initial and final hardness), and surface topography by an optical profilometer. The data were analyzed by repeated-measures ANOVA, One-way ANOVA, and Tukey tests (α=0.05).

Results: TEM images showed small spherical particles with diameter and zeta potential values of 79.3 nm and +47.9 mV, respectively. After the challenge, all groups showed an increase in Ra and a decrease in KHN values. Optical profilometry indicated that ChNPs- and NaF-treated specimens showed uneven roughness interspersed with smooth areas and the lowest %KHN values.

Conclusion: The ChNPs suspension was successfully synthesized and minimized human enamel demineralization after a cariogenic challenge, showing an interesting potential for use as an oral formulation for caries prevention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8523102PMC
http://dx.doi.org/10.1590/1678-7757-2021-0120DOI Listing

Publication Analysis

Top Keywords

cariogenic challenge
20
chnps suspension
12
enamel demineralization
8
human enamel
8
challenge
6
cariogenic
5
synthesis chitosan
4
chitosan nanoparticle
4
suspension
4
nanoparticle suspension
4

Similar Publications

Potentiation of antimicrobial photodynamic therapy with potassium iodide and methylene blue: targeting oral biofilm viability.

Photochem Photobiol Sci

December 2024

Department of Health Sciences and Pediatric Dentistry, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), P.O. BOX 52, Av. Limeira, 901, Piracicaba, SP, 13414-903, Brazil.

The study aimed to assess the impact of combining potassium iodide (KI) with methylene blue (MB) in antimicrobial photodynamic therapy (aPDT) within an oral biofilm formed in situ. A single-phase, 14 days in situ study involved 21 volunteers, who wore a palatal appliance with 8 bovine dentin slabs. These slabs were exposed to a 20% sucrose solution 8 times a day, simulating a high cariogenic challenge.

View Article and Find Full Text PDF

Terahertz Imaging Detects Oral Cariogenic Microbial Domains Characteristics.

J Dent Res

December 2024

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Dental caries, associated with plaque biofilm, is highly prevalent and significantly burdens public health. is the main cariogenic bacteria that adheres to the tooth surface and forms an abundant extracellular polysaccharide matrix (EPS) as a cariogenic biofilm scaffold. RNase III-encoding gene () and a putative chromosome segregation protein-encoding gene () are potentially associated with EPS production.

View Article and Find Full Text PDF

Objective: The objectives of this study were to develop a tooth-binding graphene quantum dots silver nanocomposites (ALN-GQDs-Ag) and evaluate their antibacterial, mineralising, and discolouring properties for the prevention of dental caries.

Methods: In this study, ALN-GQDs-Ag were developed by synthesising nano silver (Ag) with graphene quantum dots (GQDs) and functionalised GQDs with alendronate (ALN). ALN-GQDs-Ag were characterised by transmission electron microscopy (TEM), zeta potential analysis, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy.

View Article and Find Full Text PDF

Objective: To investigate the antibacterial, mineralising, and discolouring properties of copper tetraamine fluoride (CTF) on artificial dentine caries.

Method: Demineralised human dentine blocks were treated with CTF, silver diamine fluoride (SDF, positive control) and water (negative control) before they were subjected to cariogenic challenge with Streptococcus mutans biofilm. The morphology, viability, and growth kinetics of the biofilm were assessed by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and colony-forming unit (CFU) counting.

View Article and Find Full Text PDF

Polymicrobial diseases such as periodontal disease and caries pose significant treatment challenges due to their resistance to common approaches like antibiotic therapy. These infections exhibit increased resilience, due to microbial interactions that also disrupt host immune responses. Current research focuses on virulence and disease-promoting interactions, but less is known about interactions that could inhibit or prevent disease development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!