A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Extracellular Polymeric Substances (EPS) produced by Streptomyces sp. biofilms: Chemical composition and anticancer properties. | LitMetric

Extracellular Polymeric Substances (EPS) produced by Streptomyces sp. biofilms: Chemical composition and anticancer properties.

Microbiol Res

Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, T40001MVB, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, T4000, Tucumán, Argentina. Electronic address:

Published: December 2021

The extracellular polymeric substances (EPS) have shown free radical scavenging and antitumor activity against both breast and colon cell lines. In this regard, actinobacteria have become an increasingly popular sources of EPS. Therefore, in this study four Streptomyces strains isolated from contaminated soil (M7, A5, A14 and MC1) were evaluated for determining its biofilm-forming capacity including under pesticide stress. In addition, chemical composition of EPS and its cytotoxic effects over 4T1 breast cancer cell and Caco-2 human tumor colon cells were evaluated. The results demonstrated that Streptomyces sp. A5 had the highest capability to develop biofilm more than other strains tested, even under pesticide stress. Moreover, this strain produced EPS with a total protein/total polysaccharide rate of 1.59 ± 0.05. On the other hand, cytotoxicity assays of EPS showed that Streptomyces sp. A5 display a higher toxic effect against 4T1 Breast cancer cells (96.2 ± 13.5 %), Caco-2 (73.9 ± 6.4 %) and low toxicity (29.9 % ± 9.1 %) against non-transformed intestinal cells (IEC-18). Data do not show cytotoxic effect relationship with biofilm-forming capabilities of strains, nor the chemical composition of EPS matrix. The gene that codes for polysaccharide deacetylase, parB-like and transRDD proteins, were identified. These results contribute to the knowledge about the variability of chemical composition and potential cytotoxic properties of EPS produced by Streptomyces biofilms. It proposes interesting future challenges for linking Streptomyces-based pesticide remediation technology with the development of new antitumor drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2021.126877DOI Listing

Publication Analysis

Top Keywords

chemical composition
16
extracellular polymeric
8
polymeric substances
8
eps
8
substances eps
8
eps produced
8
produced streptomyces
8
streptomyces biofilms
8
pesticide stress
8
composition eps
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!