Extracellular vesicles (EVs) are protein-loaded nano-scaled particles that are extracellularly released by eukaryotes and prokaryotes. Parasite's EVs manipulate the immune system, making them probable next-generation vaccines. Schistosomal EVs carry different proteins of promising immunizing potentials. For evaluating the immune-protective role of Schistosoma mansoni (S. mansoni) egg-derived EVs against murine schistosomiasis, EVs were isolated from cultured S. mansoni eggs by progressive sequential cooling ultra-centrifugation technique. Isolated EVs were structurally identified using transmission electron microscope and their protein was quantified by Lowry's technique. Experimental mice were subcutaneously immunized with three doses of 20 μg EVs (with or without alum adjuvant); every two weeks, then were challenged with S. mansoni cercariae two weeks after the last immunizing dose. Six weeks post infection, mice were sacrificed for vaccine candidate assessment. EVs protective efficacy was evaluated through parasitological, histopathological, and immunological parameters. Results showed significant reduction of tegumentally deranged adult worms, hepatic and intestinal egg counts reduction by 46.58%, 93.14% and 93.17% respectively, accompanied by remarkable amelioration of sizes, numbers and histopathology of hepatic granulomata mediated by high interferon gamma (IFN γ) and antibody level. Using sera from vaccinated mice, the molecular weight of EVs' protein components targeted by the antibody produced was recognized by western immunoblot. Results revealed two bands of ~ 14 KDa and ~ 21 KDa, proving that EVs are able to stimulate specific antibodies response. In conclusion, the present study highlighted the role of S. mansoni-egg derived EVs as a potential vaccine candidate against murine schistosomiasis mansoni.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544836PMC
http://dx.doi.org/10.1371/journal.pntd.0009866DOI Listing

Publication Analysis

Top Keywords

vaccine candidate
12
murine schistosomiasis
12
evs
10
schistosoma mansoni
8
mansoni egg-derived
8
extracellular vesicles
8
candidate murine
8
mansoni
5
egg-derived extracellular
4
vesicles promising
4

Similar Publications

Background: Epstein-Barr virus (EBV) is implicated as a necessary factor in the development of multiple sclerosis (MS) and may also be a driver of disease activity. Although it is not clear whether ongoing viral replication is the driver for MS pathology, MS researchers have considered the prospect of using drugs with potential efficacy against EBV in the treatment of MS. We have undertaken scientific and lived experience expert panel reviews to shortlist existing licensed therapies that could be used in later-stage clinical trials in MS.

View Article and Find Full Text PDF

Traditional approaches for quantitatively characterizing uncertainty in risk assessment require adaptation to accommodate increased reliance on observational (vs. experimental) studies in developing toxicity values. Herein, a case study with PFOA and PFOS and vaccine response explores approaches for qualitative and-where possible-quantitative assessments of uncertainty at each step in the toxicity value development process when using observational data, including review and appraisal of individual studies, candidate study selection, dose-response modeling, and application of uncertainty factors.

View Article and Find Full Text PDF

A Bibliometric Analysis on Multi-epitope Vaccine Development Against SARS-CoV-2: Current Status, Development, and Future Directions.

Mol Biotechnol

January 2025

Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.

The etiological agent for the coronavirus disease 2019 (COVID-19), the SARS-CoV-2, caused a global pandemic. Although mRNA, viral-vectored, DNA, and recombinant protein vaccine candidates were effective against the SARS-CoV-2 Wuhan strain, the emergence of SARS-CoV-2 variants of concern (VOCs) reduced the protective efficacies of these vaccines. This necessitates the need for effective and accelerated vaccine development against mutated VOCs.

View Article and Find Full Text PDF

Development of a novel multi-epitope subunit mRNA vaccine candidate to combat Acinetobacter baumannii.

Sci Rep

January 2025

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

Acinetobacter baumannii, an opportunistic bacterium prevalent in various environment, is a significant cause of nosocomial infections in ICUs. As the causative agent of pneumonia, septicemia, and meningitis, A. baumannii typically exhibits multidrug resistance and is associated with poor prognosis, thus led to a challenge for researchers in developing new treatment and prevention methods.

View Article and Find Full Text PDF

Influenza remains a persistent global health challenge, largely due to the virus' continuous antigenic drift and occasional shift, which impede the development of a universal vaccine. To address this, the identification of broadly neutralizing antibodies and their epitopes is crucial. Nanobodies, with their unique characteristics and binding capacity, offer a promising avenue to identify such epitopes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!