Shiga toxin-producing Escherichia coli (STEC) organisms are a diverse group of pathogenic bacteria capable of causing serious human illness, and serogroups O157 and O26 are frequently implicated in human disease. Ruminant hosts are the primary STEC reservoir, and small ruminants are important contributors to STEC transmission. This study investigated the prevalence, serotypes, and shedding dynamics of STEC, including the supershedding of serogroups O157 and O26, in Irish sheep. Recto-anal mucosal swab samples ( = 840) were collected over 24 months from two ovine slaughtering facilities. Samples were plated on selective agars and were quantitatively and qualitatively assessed via real-time PCR (RT-PCR) for Shiga toxin prevalence and serogroup. A subset of STEC isolates ( = 199) were selected for whole-genome sequencing and analyzed . In total, 704/840 (83.8%) swab samples were Shiga toxin positive following RT-PCR screening, and 363/704 (51.6%) animals were subsequently culture positive for STEC. Five animals were shedding STEC O157, and three of these were identified as supershedders. No STEC O26 was isolated. statistical analysis showed that younger animals are more likely to harbor STEC and that STEC carriage is most prevalent during the summer months. Following sequencing, 178/199 genomes were confirmed as STEC. Thirty-five different serotypes were identified, 15 of which were not yet reported for sheep. Serotype O91:H14 was the most frequently reported. Eight Shiga toxin gene variants were reported, two and six , and three novel Shiga-toxin subunit combinations were observed. Variant was the most prevalent, while many strains also harbored . Shiga toxin-producing Escherichia coli (STEC) bacteria are foodborne, zoonotic pathogens of significant public health concern. All STEC organisms harbor , a critical virulence determinant, but it is not expressed in most serotypes. Sheep shed the pathogen via fecal excretion and are increasingly recognized as important contributors to the dissemination of STEC. In this study, we have found that there is high prevalence of STEC circulating within sheep and that prevalence is related to animal age and seasonality. Further, sheep harbor a variety of non-O157 STEC, whose prevalence and contribution to human disease have been underinvestigated for many years. A variety of Stx variants were also observed, some of which are of high clinical importance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612287PMC
http://dx.doi.org/10.1128/AEM.01384-21DOI Listing

Publication Analysis

Top Keywords

stec
16
shiga toxin-producing
12
toxin-producing escherichia
12
escherichia coli
12
shiga toxin
12
irish sheep
8
coli stec
8
stec organisms
8
serogroups o157
8
o157 o26
8

Similar Publications

Shiga toxin-producing (STEC) refers to a group of bacteria that can cause infections, which are common worldwide and pose a serious public health problem, as they can lead to conditions such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). HUS is a disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. Determination of serogroups and toxin profiles of STEC is important for estimating their disease-causing potential and predicting epidemiological changes.

View Article and Find Full Text PDF

Shiga toxin-producing (STEC) is a group of bacteria that causes gastrointestinal illness and occasionally causes large foodborne outbreaks. It represents a major public health concern due to its ability to cause severe illness which can sometimes be fatal. This study was undertaken as part of a rapid investigation into a national foodborne outbreak of STEC O145.

View Article and Find Full Text PDF

Escherichia coli of different pathotypes are frequently involved in morbidity and mortality in animals and humans. The study aimed to identify E. coli pathotypes and determine antimicrobial resistance (AMR) profiles in Ethiopian smallholder livestock households.

View Article and Find Full Text PDF

Background: Plasma pregenomic hepatitis B virus RNA (pgRNA) is a novel biomarker in chronic hepatitis B infection (CHB). We aimed to describe the longitudinal profile of pgRNA and factors influencing its levels in CHB patients on nucleoside analogue (NUC).

Methods: Serial plasma samples from 1354 CHB patients started on first-line NUC were evaluated.

View Article and Find Full Text PDF

Background: Shiga toxin-producing Escherichia coli-associated hemolytic uremic syndrome (STEC-HUS) is a life-threatening condition complicated by acute kidney injury, acute respiratory distress syndrome, and central nervous system disorders. The early identification of high-risk patients is required to facilitate timely and appropriate treatment.

Methods: The medical records of patients with STEC-HUS treated at 11 hospitals in Hokkaido, Japan, were reviewed retrospectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!