Background: Research into the potential utility of plasma-derived circulating cell-free nucleic acids as non-invasive adjuncts to radiological imaging have been occasioned by the invasive nature of brain tumour biopsy. The objective of this study was to determine whether significant differences exist in the plasma transcriptomic profile of glioma patients relative to differences in their tumour characteristics, and also whether any observed differences were representative of synchronously obtained glioma samples and TCGA glioma-derived RNA.

Methods: Blood samples were collected from twenty glioma patients prior to tumour resection. Plasma ccfmRNAs and glioma-derived RNA were extracted and profiled.

Results: BCL2L1, GZMB, HLA-A, IRF1, MYD88, TLR2, and TP53 genes were significantly over-expressed in glioma patients (p < 0.001, versus control). GZMB and HLA-A genes were significantly over-expressed in high-grade glioma patients (p < 0.001, versus low-grade glioma patients). Moreover, the fold change of the BCL2L1 gene was observed to be higher in patients with high-grade glioma (p = 0.022, versus low-grade glioma patients). There was positive correlation between the magnitude of fold change of differentially expressed genes in plasma- and glioma-derived RNA (Spearman r = 0.6344, n = 14, p = 0.017), and with the mean FPKM in TCGA glioma-derived RNA samples (Spearman r = 0.4614, n = 19, p < 0.05). There was positive correlation between glioma radiographic tumour burden and the magnitude of fold change of the CSF3 gene (r = 0.9813, n = 20, p < 0.001).

Conclusion: We identified significant differential expression of genes involved in cancer inflammation and immunity crosstalk among patients with different glioma grades, and there was positive correlation between their transcriptomic profile in plasma and tumour samples, and with TCGA glioma-derived RNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8913523PMC
http://dx.doi.org/10.1007/s00701-021-05014-8DOI Listing

Publication Analysis

Top Keywords

glioma patients
12
circulating cell-free
8
glioma
5
utility plasma
4
plasma circulating
4
cell-free messenger
4
messenger rna
4
rna biomarker
4
biomarker glioma
4
glioma pilot
4

Similar Publications

Background: Publicly available data are essential for the progress of medical image analysis, in particular for crafting machine learning models. Glioma is the most common group of primary brain tumors, and magnetic resonance imaging (MRI) is a widely used modality in their diagnosis and treatment. However, the availability and quality of public datasets for glioma MRI are not well known.

View Article and Find Full Text PDF

Background: This study aimed to develop an automated algorithm to noninvasively distinguish gliomas from other intracranial pathologies, preventing misdiagnosis and ensuring accurate analysis before further glioma assessment.

Methods: A cohort of 1280 patients with a variety of intracranial pathologies was included. It comprised 218 gliomas (mean age 54.

View Article and Find Full Text PDF

Glioblastoma(GBM) is a highly malignant primary central nervous system tumor that poses a significant threat to patient survival due to its treatment resistance and rapid recurrence.Current treatment options, including maximal safe surgical resection, radiotherapy, and temozolomide (TMZ) chemotherapy, have limited efficacy.In recent years, the role of glycolytic metabolic reprogramming in GBM has garnered increasing attention.

View Article and Find Full Text PDF

Sodium valproate enhances efficacy of NKG2D CAR-T cells against glioblastoma.

Front Immunol

January 2025

Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage.

View Article and Find Full Text PDF

Gliomas account for nearly 30% of all primary central nervous system (CNS) tumors in children and adolescents and young adults (AYA), contributing to significant morbidity and mortality. The updated molecular classification of gliomas defines molecularly diverse subtypes with a spectrum of tumors associated with age-distinct incidence. In adults, gliomas are characterized by the presence or absence of mutations in isocitrate dehydrogenase (), with mutated (mIDH) gliomas providing favorable outcomes and avenues for targeted therapy with the emergence of mIDH inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!