Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Flow cytometry (FC) is critical for the diagnosis and monitoring of hematologic malignancies. Machine learning (ML) methods rapidly classify multidimensional data and should dramatically improve the efficiency of FC data analysis. We aimed to build a model to classify acute leukemias, including acute promyelocytic leukemia (APL), and distinguish them from nonneoplastic cytopenias. We also sought to illustrate a method to identify key FC parameters that contribute to the model's performance.
Methods: Using data from 531 patients who underwent evaluation for cytopenias and/or acute leukemia, we developed an ML model to rapidly distinguish among APL, acute myeloid leukemia/not APL, acute lymphoblastic leukemia, and nonneoplastic cytopenias. Unsupervised learning using gaussian mixture model and Fisher kernel methods were applied to FC listmode data, followed by supervised support vector machine classification.
Results: High accuracy (ACC, 94.2%; area under the curve [AUC], 99.5%) was achieved based on the 37-parameter FC panel. Using only 3 parameters, however, yielded similar performance (ACC, 91.7%; AUC, 98.3%) and highlighted the significant contribution of light scatter properties.
Conclusions: Our findings underscore the potential for ML to automatically identify and prioritize FC specimens that have critical results, including APL and other acute leukemias.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ajcp/aqab148 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!