Objectives: We aimed to determine the incidence of periodic and rhythmic patterns (PRP), assess the interrater agreement between electroencephalographers scoring PRP using standardized terminology, and analyze associations between PRP and electrographic seizures (ES) in critically ill children.
Methods: This was a prospective observational study of consecutive critically ill children undergoing continuous electroencephalographic monitoring (CEEG). PRP were identified by one electroencephalographer, and then two pediatric electroencephalographers independently scored the first 1-h epoch that contained PRP using standardized terminology. We determined the incidence of PRPs, evaluated interrater agreement between electroencephalographers scoring PRP, and evaluated associations between PRP and ES.
Results: One thousand three hundred ninety-nine patients underwent CEEG. ES occurred in 345 (25%) subjects. PRP, ES + PRP, and ictal-interictal continuum (IIC) patterns occurred in 142 (10%), 81 (6%), and 93 (7%) subjects, respectively. The most common PRP were generalized periodic discharges (GPD; 43, 30%), lateralized periodic discharges (LPD; 34, 24%), generalized rhythmic delta activity (GRDA; 34, 24%), bilateral independent periodic discharges (BIPD; 14, 10%), and lateralized rhythmic delta activity (LRDA; 11, 8%). ES risk varied by PRP type (p < .01). ES occurrence was associated with GPD (odds ratio [OR] = 6.35, p < .01), LPD (OR = 10.45, p < .01), BIPD (OR = 6.77, p < .01), and LRDA (OR = 6.58, p < .01). Some modifying features increased the risk of ES for each of those PRP. GRDA was not significantly associated with ES (OR = 1.34, p = .44). Each of the IIC patterns was associated with ES (OR = 6.83-8.81, p < .01). ES and PRP occurred within 6 h (before or after) in 45 (56%) subjects.
Significance: PRP occurred in 10% of critically ill children who underwent CEEG. The most common patterns were GPD, LPD, GRDA, BIPD, and LRDA. The GPD, LPD, BIPD, LRDA, and IIC patterns were associated with ES. GRDA was not associated with ES.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/epi.17068 | DOI Listing |
EClinicalMedicine
December 2024
Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Infant alertness and neurologic changes can reflect life-threatening pathology but are assessed by physical exam, which can be intermittent and subjective. Reliable, continuous methods are needed. We hypothesized that our computer vision method to track movement, pose artificial intelligence (AI), could predict neurologic changes in the neonatal intensive care unit (NICU).
View Article and Find Full Text PDFJ Intensive Care Soc
January 2025
Department of Physiotherapy, Faculty of Medicine, Dentistry and Health Sciences, School of Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.
Digital health refers to the field of using and developing technology to improve health outcomes. Digital health and digital health interventions (DHIs) within the area of intensive care and critical illness survivorship are rapidly evolving. Digital health interventions refer to technologies in clinical interventional format.
View Article and Find Full Text PDFIntroduction The pediatric intensive care unit (PICU) is a specialized area for treating critically ill infants and children. However, some of these children may experience poor outcomes, including death. However, it is necessary to predict the prognosis for critically ill patients as early as possible to commence triage as well as an early and effective intervention to prevent mortality.
View Article and Find Full Text PDFFront Cardiovasc Med
December 2024
Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
Background: Artificial intelligence (AI) has been widely adopted for the prediction of latent shock occurrence in critically ill patients in intensive care units (ICUs). However, the usefulness of an ICU-based model to predict latent shock risk in an emergency department (ED) setting remains unclear. This study aimed to develop an AI model to predict latent shock risk in patients admitted to EDs.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Introduction: The Sequential Organ Failure Assessment (SOFA) score is a widely utilized clinical tool for evaluating the severity of organ failure in critically ill patients and assessing their condition and prognosis in the intensive care unit (ICU). Research has demonstrated that higher SOFA scores are associated with poorer outcomes in these patients. However, the predictive value of the SOFA score for acute kidney injury (AKI), a common complication of diabetic ketoacidosis (DKA), remains uncertain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!