Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vehicle re-identification (re-id) aims to solve the problems of matching and identifying the same vehicle under the scenes across multiple surveillance cameras. For public security and intelligent transportation system (ITS), it is extremely important to locate the target vehicle quickly and accurately in the massive vehicle database. However, re-id of the target vehicle is very challenging due to many factors, such as the orientation variations, illumination changes, occlusion, low resolution, rapid vehicle movement, and amounts of similar vehicle models. In order to resolve the difficulties and enhance the accuracy for vehicle re-id, in this work, we propose an improved multi-branch network in which global-local feature fusion, channel attention mechanism and weighted local feature are comprehensively combined. Firstly, the fusion of global and local features is adopted to obtain more information of the vehicle and enhance the learning ability of the model; Secondly, the channel attention module in the feature extraction branch is embedded to extract the personalized features of the targeting vehicle; Finally, the background and noise information on feature extraction is controlled by weighted local feature. The results of comprehensive experiments on the mainstream evaluation datasets including VeRi-776, VRIC, and VehicleID indicate that our method can effectively improve the accuracy of vehicle re-identification and is superior to the state-of-the-art methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511133 | PMC |
http://dx.doi.org/10.1038/s41598-021-99646-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!