Outcomes Following Hypofractionated Stereotactic Radiotherapy to the Cavity After Surgery for Melanoma Brain Metastases.

Clin Oncol (R Coll Radiol)

Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia; Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia; Icon Cancer Centre, Greenslopes Private Hospital, Greenslopes, Queensland, Australia.

Published: March 2022

Aims: Hypofractionated stereotactic radiotherapy (HSRT) to the cavity after surgical resection of brain metastases improves local control. Most reported cohorts include few patients with melanoma, a population known to have high rates of recurrence and neurological death. We aimed to assess outcomes in patients with melanoma brain metastases who received HSRT after surgery at two Australian institutions.

Materials And Methods: A retrospective analysis was carried out including patients treated between January 2012 and May 2020. HSRT was recommended for patients with melanoma brain metastases at high risk of local recurrence after surgery. Treatment was delivered using appropriately commissioned linear accelerators. Routine follow-up included surveillance magnetic resonance imaging brain every 3 months for at least 2 years. Primary outcomes were overall survival, local control, incidence of radiological radionecrosis and symptomatic radionecrosis.

Results: There were 63 cavities identified in 57 patients. The most common HSRT dose prescriptions were 24 Gy in three fractions and 27.5 Gy in five fractions. The median follow-up was 32 months in survivors. Local control was 90% at 1 year, 83% at 2 years and 76% at 3 years. Subtotal brain metastases resection (hazard ratio 12.5; 95% confidence interval 1.4-111; P = 0.0238) was associated with more local recurrence. Overall survival was 64% at 1 year, 45% at 2 years and 40% at 3 years. There were 10 radiological radionecrosis events (16% of cavities) during the study period, with 5% at 1 year and 8% at 2 years after HSRT. The median time to onset of radiological radionecrosis was 21 months (range 6-56). Of these events, three became symptomatic (5%) during the study period at a median time to onset of 26 months (range 21-32).

Conclusion: Cavity HSRT is associated with high rates of local control in patients with melanoma brain metastases. Subtotal resection strongly predicts for local recurrence after HSRT. Symptomatic radionecrosis occurred in 5% of cavities but increased to 8% of longer-term survivors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clon.2021.09.015DOI Listing

Publication Analysis

Top Keywords

brain metastases
24
melanoma brain
16
local control
16
patients melanoma
16
local recurrence
12
radiological radionecrosis
12
hypofractionated stereotactic
8
stereotactic radiotherapy
8
high rates
8
study period
8

Similar Publications

A major limiting factor in the success of chimeric antigen receptor (CAR) T cell therapy for the treatment of solid tumors is targeting tumor antigens also found on normal tissues. CAR T cells against GD2 induced rapid, fatal neurotoxicity because of CAR recognition of GD2 normal mouse brain tissue. To improve the selectivity of the CAR T cell, we engineered a synthetic Notch receptor that selectively expresses the CAR upon binding to P-selectin, a cell adhesion protein overexpressed in tumor neovasculature.

View Article and Find Full Text PDF

Future Directions in the Treatment of Low-Grade Gliomas.

Cancer J

January 2025

Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL.

There is major interest in deintensifying therapy for isocitrate dehydrogenase-mutant low-grade gliomas, including with single-agent cytostatic isocitrate dehydrogenase inhibitors. These efforts need head-to-head comparisons with proven modalities, such as chemoradiotherapy. Ongoing clinical trials now group tumors by intrinsic molecular subtype, rather than classic clinical risk factors.

View Article and Find Full Text PDF

Management of Low-Grade Gliomas.

Cancer J

January 2025

From the Division of Neuro-Oncology, Department of Neurology and the Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians & Surgeons and NewYork-Presbyterian, New York, NY.

The term "low-grade glioma" historically refers to adult diffuse gliomas that exhibit a less aggressive course than the more common high-grade gliomas. In the current molecular era, "low-grade" refers to World Health Organization central nervous system grade 2 gliomas almost always with an isocitrate dehydrogenase (IDH) mutation (astrocytomas and oligodendrogliomas). The term "lower-grade gliomas" has emerged encompassing grades 2 and 3 IDH-mutant astrocytomas and oligodendrogliomas, to acknowledge that histological grade is not as important a prognostic factor as molecular features, and distinguishing them from grade 4 glioblastomas, which lack an IDH mutation.

View Article and Find Full Text PDF

There has been a significant paradigm shift in the clinical management of lower-grade glioma patients given the recent updates to the 2021 World Health Organization classification along with long-term results from randomized phase III clinical trials. As a result, we are now better able to diagnose and assign patients to the most appropriate treatment course. This review provides a comprehensive summary of the most robust and reliable molecular biomarkers for adult lower-grade gliomas and discusses current challenges facing this patient population that future correlative biology studies combined with advancements in technologies could help overcome.

View Article and Find Full Text PDF

CDCG-UNet: Chaotic Optimization Assisted Brain Tumor Segmentation Based on Dilated Channel Gate Attention U-Net Model.

Neuroinformatics

January 2025

Department of Information Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram, Chennai, 600089, India.

Brain tumours are one of the most deadly and noticeable types of cancer, affecting both children and adults. One of the major drawbacks in brain tumour identification is the late diagnosis and high cost of brain tumour-detecting devices. Most existing approaches use ML algorithms to address problems, but they have drawbacks such as low accuracy, high loss, and high computing cost.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!