Background: Azoospermic patients have benefited from both epididymal and testicular spermatozoa intracytoplasmic sperm injection (ICSI) treatment and lasers have been used to identify viable, immotile spermatozoa before the procedure. There are limited studies on the safety of laser-assisted selection of immotile spermatozoa. The aim of this study was to investigate the impact of laser-assisted selection of immotile spermatozoa on the obstetric and neonatal outcomes after ICSI.

Methods: A retrospective comparative study was conducted on outcomes of ICSI cycles with testicular spermatozoa from June 2014 to June 2018. Of 132 cycles, 33 were allocated to the test group and oocytes were injected with immotile spermatozoa selected by laser, 99 cycles were allocated as control group.

Results: Compared with the control group, no significant differences were found in the pregnancy, implantation, miscarriage and live birth rates in the test group in either fresh or frozen transfer cycles. The cumulative live birth rate in the test group was 69.70%, which was slightly higher than in the control group (60.61%), but this was not statistically different. There were no differences in the average gestational age, premature birth rate, neonatal birth weight, and the malformation rate between the test and control groups (P > 0.05). In addition, the obstetric outcome between the two groups were not different (P > 0.05).

Conclusions: No negative effect on perinatal and neonatal outcomes was seen by using laser-assisted selection of immotile spermatozoa for TESA-ICSI. This study endorses the use of laser-assisted selection of viable spermatozoa for ICSI cycles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507098PMC
http://dx.doi.org/10.1186/s12958-021-00835-9DOI Listing

Publication Analysis

Top Keywords

immotile spermatozoa
24
laser-assisted selection
20
selection immotile
16
neonatal outcomes
12
test group
12
spermatozoa
9
spermatozoa obstetric
8
obstetric neonatal
8
testicular spermatozoa
8
icsi cycles
8

Similar Publications

Micronucleus counts correlating with male infertility: a clinical analysis of chromosomal abnormalities and reproductive parameters.

Asian J Androl

January 2025

Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China.

Investigating the correlation between micronucleus formation and male infertility has the potential to improve clinical diagnosis and deepen our understanding of pathological progression. Our study enrolled 2252 male patients whose semen was analyzed from March 2023 to July 2023. Their clinical data, including semen parameters and age, were also collected.

View Article and Find Full Text PDF

Polypeptide N-acetylgalactosaminyltransferase-like protein 5 (GALNTL5) was identified as a pp-GalNAc-T family gene. Nevertheless, GALNTL5 has no glycosyltransferase activity. In mice, Galntl5 expression is restricted to differentiating spermatids, and haploinsufficiency leads to immotile spermatozoa with an aberrant protein composition.

View Article and Find Full Text PDF

Collective sperm movement in mammalian reproductive tracts.

Semin Cell Dev Biol

February 2025

Division of Reproductive Biology, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.

Mammalian sperm cells travel from their origin in the male reproductive tract to fertilization in the female tract through a complex process driven by coordinated mechanical and biochemical mechanisms. Recent experimental and theoretical advances have illuminated the collective behaviors of sperm both in vivo and in vitro. However, our understanding of the underlying mechano-chemical processes remains incomplete.

View Article and Find Full Text PDF

Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia in various organ systems, including the respiratory and reproductive tracts. A key manifestation in males is infertility, primarily attributed to impaired sperm motility. Although sperm vitality may be preserved, immotility or abnormal flagellar function significantly impairs natural conception.

View Article and Find Full Text PDF

Asthenoteratozoospermia is a major cause of male infertility. Thus far, the identified related genes can explain only a small share of asthenoteratozoospermia cases, suggesting the involvement of other genes. The transmembrane protein TMEM232 is highly expressed in mouse testes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!