Molecules
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
Published: October 2021
Lacunary polyoxometalates (LPOMs) are key precursors for the synthesis of functional POMs. To date, reviews dedicated to behavioral studies of LPOMs often comprise the role of metal ions, including transition metal (TM) and rare earth (RE) ions, in extending and stability of high-nuclearity clusters. In contrast, the role of organic ligands in the structures and properties of lacunary-based hybrids has remained less explored. In this review, we focus on the role of organic fragments in the self-assembling process of POM-based architectures and discuss relationships between the nature and structure of organic ligand and properties such as the topology of hybrid inorganic-organic material in RE and TM-RE heterometallic derivatives of lacunary Keggin-type POMs. The effects of organic fragment in mixed ligand hybrids are also briefly reviewed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512714 | PMC |
http://dx.doi.org/10.3390/molecules26195994 | DOI Listing |
Front Antibiot
August 2023
Digital One Health Lab, Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
Antimicrobial resistance (AMR) is a major threat to global health and a key One Health challenge linking humans, animals, and the environment. Livestock are a key target for moderation of antimicrobial use (AMU), which is a major driver of AMR in these species. While some studies have assessed AMU and AMR in individual production systems, the evidence regarding predictors of AMU and AMR in livestock is fragmented, with significant research gaps in identifying the predictors of AMU and AMR common across farming systems.
View Article and Find Full Text PDFBioresour Technol
January 2025
National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China. Electronic address:
There is limited understanding of the granular partial denitrification/anammox (PD/A) microbiota and metabolic hierarchy specific to municipal wastewater treatment, particularly concerning the multi-mechanisms of functional differentiation and granulation tendencies under high-loading shocks. Therefore, this study utilized fragmented mature biofilm as the exclusive inoculum to rapidly establish a granular PD/A system. Following long-term feeding with municipal wastewater, PD/A process reached a total nitrogen removal efficiency of 97.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, Vilnius 10257, Lithuania.
Enzymatic degradation of plastic pollution offers a promising environmentally friendly waste management strategy, however, suitable biocatalysts must be screened and developed. Traditional screening methods using soluble or solubilised polymers do not necessarily identify enzymes that are effective against solid or crystalline polymers. This study presents a simple, time-saving and cost-effective method for identifying microorganisms and enzymes capable of degrading polymeric films.
View Article and Find Full Text PDFJ Med Chem
January 2025
Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China.
Multidrug-resistant (MDR) bacteria pose a global health threat, underscoring the need for new antibiotics. Lefamulin, the first novel-mechanism antibiotic approved by the FDA in decades, showcases pleuromutilins' promise due to low mutation frequency. However, their clinical use is limited by poor pharmacokinetics and organ toxicity.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
Bacterial social interactions play crucial roles in various ecological, medical, and biotechnological contexts. However, predicting these interactions from genome sequences is notoriously difficult. Here, we developed bioinformatic tools to predict whether secreted iron-scavenging siderophores stimulate or inhibit the growth of community members.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.