Convertible and Constrained Nucleotides: The 2'-Deoxyribose 5'-C-Functionalization Approach, a French Touch.

Molecules

Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France.

Published: September 2021

Many strategies have been developed to modulate the biological or biotechnical properties of oligonucleotides by introducing new chemical functionalities or by enhancing their affinity and specificity while restricting their conformational space. Among them, we review our approach consisting of modifications of the 5'-C-position of the nucleoside sugar. This allows the introduction of an additional chemical handle at any position on the nucleotide chain without disturbing the Watson-Crick base-pairing. We show that 5'-C bromo or propargyl convertible nucleotides (CvN) are accessible in pure diastereoisomeric form, either for nucleophilic displacement or for CuAAC conjugation. Alternatively, the 5'-carbon can be connected in a stereo-controlled manner to the phosphate moiety of the nucleotide chain to generate conformationally constrained nucleotides (CNA). These allow the precise control of the sugar/phosphate backbone torsional angles. The consequent modulation of the nucleic acid shape induces outstanding stabilization properties of duplex or hairpin structures in accordance with the preorganization concept. Some biological applications of these distorted oligonucleotides are also described. Effectively, the convertible and the constrained approaches have been merged to create constrained and convertible nucleotides (CNA) providing unique tools to functionalize and stabilize nucleic acids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512084PMC
http://dx.doi.org/10.3390/molecules26195925DOI Listing

Publication Analysis

Top Keywords

convertible constrained
8
constrained nucleotides
8
nucleotide chain
8
convertible nucleotides
8
nucleotides cna
8
convertible
4
nucleotides
4
nucleotides 2'-deoxyribose
4
2'-deoxyribose 5'-c-functionalization
4
5'-c-functionalization approach
4

Similar Publications

Ferulic acid (FA) is a phenolic compound obtained naturally and is a versatile antioxidant identified for its potential in managing hypertension. However, its application is constrained due to its classification as a BCS Class IV moiety. To address this, we concentrated on improving its solubility and permeability by developing nanostructured lipid carriers (NLCs) of FA using emulsification probe sonication technique.

View Article and Find Full Text PDF

The rapid deployment and enhanced communication capabilities of unmanned aerial vehicles (UAVs) have enabled numerous real-time sensing applications. These scenarios often necessitate task offloading and execution under stringent transmission delay constraints, particularly for time-critical applications such as disaster rescue and environmental monitoring. This paper investigates the improvement of MEC-based task offloading services in energy-constrained UAV networks using backscatter communication (BackCom) with non-orthogonal multiple access (BAC-NOMA).

View Article and Find Full Text PDF

Edge detection is one of the most essential research hotspots in computer vision and has a wide variety of applications, such as image segmentation, target detection, and other high-level image processing technologies. However, efficient edge detection is difficult in a resource-constrained environment, especially edge-computing hardware. Here, we report a low-power edge detection hardware system based on HfO-based ferroelectric field-effect transistor, which is one of the most potential non-volatile memories for energy-efficient computing.

View Article and Find Full Text PDF

Purpose: Double-level osteotomies (DLOs) have shown promising results for knee joint preservation, however, most ultimately progress in terms of degenerative disease resulting in conversion to total knee arthroplasty (TKA). Therefore, the purpose of this study was to examine the time to TKA conversion, long-term clinical outcomes and revision rates of patients who have undergone TKA after prior ipsilateral DLO.

Methods: Patients who underwent simultaneous or staged DLO and subsequently underwent conversion to TKA at a single academic institution from 1997 to 2022 were evaluated.

View Article and Find Full Text PDF

Generative design-enabled exploration of wireframe DNA origami nanostructures.

Nucleic Acids Res

December 2024

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

Recent advances in computer-aided design tools have helped rapidly advance the development of wireframe DNA origami nanostructures. Specifically, automated tools now exist that can convert an input polyhedral mesh into a DNA origami nanostructure, greatly reducing the design difficulty for wireframe DNA origami nanostructures. However, one limitation of these automated tools is that they require a designer to fully conceptualize their intended nanostructure, which may be limited by their own preconceptions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!