Catalytic Oxidation of CO and Benzene over Metal Nanoparticles Loaded on Hierarchical MFI Zeolite.

Molecules

Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 11, 1113 Sofia, Bulgaria.

Published: September 2021

In order to obtain highly active catalytic materials for oxidation of carbon monoxide and volatile organic compounds (VOCs), monometallic platinum, copper, and palladium catalysts were prepared by using of two types of ZSM-5 zeolite as supports-parent ZSM-5 and the same one treated by HF and NHF buffer solution. The catalyst samples, obtained by loading of platinum, palladium, and copper on ZSM-5 zeolite treated using HF and NHF buffer solution, were more active in the reaction of CO and benzene oxidation compared with catalyst samples containing untreated zeolite. The presence of secondary mesoporosity played a positive role in increasing the catalytic activity due to improved reactant diffusion. The only exception was the copper catalysts in the reaction of CO oxidation, in which case the catalyst, based on untreated ZSM-5 zeolite, was more active. In this specific case, the key role is played by the oxidative state of copper species loaded on the ZSM-5 zeolites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510457PMC
http://dx.doi.org/10.3390/molecules26195893DOI Listing

Publication Analysis

Top Keywords

zsm-5 zeolite
12
treated nhf
8
nhf buffer
8
buffer solution
8
catalyst samples
8
zeolite
5
zsm-5
5
catalytic oxidation
4
oxidation benzene
4
benzene metal
4

Similar Publications

Fabricating a stable interface of tetracoordinated-phosphorus and framework Al within P-doping ZSM-5 zeolite for catalytic methanol-to-propylene reaction.

J Colloid Interface Sci

January 2025

Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming 650500, PR China. Electronic address:

Phosphorus (P)-doping H-ZSM-5 zeolites, which is crucial for industrial applications, aim to adjust both acidity and framework stability while optimizing product distribution in heterogeneous catalysis. Nonetheless, current phosphating methods often suffer from inadequate phosphorus dispersion and unclear interfacial interactions with framework aluminum (Al). In this work, P-doping ZSM-5 zeolites were successfully one-step prepared by using tributylphosphine served as an organophosphorus precursor, assisting by density functional theory calculations.

View Article and Find Full Text PDF

The distribution of substitutional aluminum (Al) atoms in zeolites affects molecular adsorbate geometry, catalytic activity, and shape and size selectivity. Accurately determining Al positions has been challenging. We used synchrotron resonant soft x-ray diffraction (RSXRD) at multiple energies near the Al K-edge combined with molecular adsorption techniques to precisely locate "single Al" and "Al pairs" in a commercial H-ZSM-5 zeolite.

View Article and Find Full Text PDF

Investigating the Flexibility of H-ZSM-5 Zeolite Upon Adsorption of Coke Precursors: A Theoretical and Experimental Approach.

J Phys Chem C Nanomater Interfaces

January 2025

Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0315, Norway.

The flexibility of the H-ZSM-5 zeolite upon adsorption of selected coke precursors was investigated using both theoretical and experimental approaches. Four structural models with varying active site locations were analyzed through density functional theory (DFT) simulations to determine their responses to different types and quantities of aromatic molecules. Complementary experimental analysis was performed, allowing for a direct comparison with the theoretical findings, using thermogravimetric analysis (TGA), nitrogen adsorption (N adsorption), solid-state NMR, and X-ray diffraction (XRD).

View Article and Find Full Text PDF

The ZSM-5 zeolite is the key active component in high-severity fluid catalytic cracking (FCC) catalysts and is routinely activated by phosphorus compounds in industrial production. To date, however, the detailed structure and function of the introduced phosphorus still remain ambiguous, which hampers the rational design of highly efficient catalysts. In this work, using advanced solid-state NMR techniques, we have quantitatively identified a total of seven types of P-containing complexes in P-modified ZSM-5 zeolite and clearly revealed their structure, location, and catalytic role.

View Article and Find Full Text PDF

Engineering Subnanometric Electronic Interaction between Ru and Mn in Zeolite Boosts Catalytic Oxidation of Dichloromethane.

Environ Sci Technol

January 2025

Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.

Designing catalysts with both activity and stability remains a grand challenge for the removal of chlorinated volatile organic compounds (CVOCs) by catalytic oxidation. Herein, the Ru-Mn subnanometric species encapsulated in ZSM-5 zeolite (RuMn@Z) was synthesized. It shows that the 90% conversion of dichloromethane is as low as 320 °C, which is significantly lower than that of Ru@Z (350 °C) and the impregnation catalyst (RuMn/Z, 355 °C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!