The crystal structure and solid-state packing of 4-chloro-5-1,2,3-dithiazol-5-one and two polymorphs of 4-chloro-5-1,2,3-dithiazole-5-thione were analyzed and compared to structural data of similar systems. These five-membered S,N-rich heterocycles are planar with considerable bond localization. All three structures demonstrate tight solid-state packing without voids which is attributed to a rich network of short intermolecular electrostatic contacts. These include S…N, S…O, S…Cl and S…S interactions that are well within the sum of their van der Waals radii (∑). B3LYP, BLYP, M06, mPW1PW, PBE and MP2 were employed to calculate their intramolecular geometrical parameters, the Fukui condensed functions to probe their reactivity, the bond order, Bird Index and NICS(1) to establish their aromaticity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512425PMC
http://dx.doi.org/10.3390/molecules26195875DOI Listing

Publication Analysis

Top Keywords

solid-state packing
12
crystal structure
8
structure solid-state
8
packing 4-chloro-5-123-dithiazol-5-one
8
4-chloro-5-123-dithiazol-5-one 4-chloro-5-123-dithiazole-5-thione
4
4-chloro-5-123-dithiazole-5-thione crystal
4
4-chloro-5-123-dithiazol-5-one polymorphs
4
polymorphs 4-chloro-5-123-dithiazole-5-thione
4
4-chloro-5-123-dithiazole-5-thione analyzed
4
analyzed compared
4

Similar Publications

Manipulating Crystal Packing and Self-Assembly by π-Extended and Isomeric Fused Strategies in Thiophene Ring-Terminated Polycyclic Aromatic Hydrocarbons.

Org Lett

January 2025

Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China.

Two series of polycyclic aromatic hydrocarbon isomers ( and , and and ) were designed and synthesized by isomerically fusing phenanthrene with thiophene and thieno[3,2-]thiophene, respectively. All of the new target molecules were confirmed by single-crystal X-ray analysis, and it was found that the solid-state packing can be effectively modulated through a combination of π-extended and isomeric fused strategies. Meanwhile, compared with thiophene ring-terminated isomers and , both having a V-shaped geometry and showing no obvious self-assembly behavior, π-extended unit thieno[3,2-]thiophene-terminated isomer displays a V-shaped structure with moderate self-assembly properties and isomer exhibits a C-shaped configuration with further enhanced self-assembly properties.

View Article and Find Full Text PDF

New hybrids were synthesised by linking carboranes and siloles, both of which are known as aggregation-induced emission active units. Although most of the newly synthesised systems do not display notable quantum yield either in solution or in the aggregated state, they emit strongly in the solid-state, and a quantum yield of up to 100% can be achieved. The tailorable quantum yield can be attributed to the packing of the molecules in the crystal lattice ruled by the carborane and phenyl moieties according to the SC-XRD data.

View Article and Find Full Text PDF

In this work, we present the synthesis, solid-state characterization, and studies of two pyrazole derivatives: 5-(2-methylphenoxy)-3-methyl-1-phenyl-1-pyrazole-4-carbaldehyde (I) and 5-(4-methylphenoxy)-3-methyl-1-phenyl-1-pyrazole-4-carbaldehyde (II). The molecular crystal properties, in terms of intermolecular hydrogen bonds and other weak interactions, are analyzed using single crystal X-ray diffraction. The Hirshfeld surfaces computational method is used to quantify the intermolecular interactions, density functional theory for theoretical structural optimization, and its comparison with the experimental structure and studies using docking and molecular dynamics studies of I and II with CDC7-kinase.

View Article and Find Full Text PDF

This work combines halogen and chalcogen bonding. Short, polarity directed C-X⋅⋅⋅Ch (X = Br or I, Ch = Se or Te) contacts were prepared by in situ low-temperature cocrystallization of liquid mixtures of neutral pentafluorohalogenobenzenes C6F5X and dimethyl chalco-genides Me2Ch. Solid-state structures of Me2Se and Me2Te were determined 150 and 125 years after their first description.

View Article and Find Full Text PDF

Noncovalent carbon bonding (C-bonding), a recently explored σ-hole interaction, has primarily been characterized through X-ray structural and computational studies. Evidence of C-bonds in solution is scarce, especially in highly polar solvents like DMSO where solvation effects typically overshadow weak non-covalent interactions. In this work, we present three novel spiroisatin-based -acyl hydrazones (1-3) in which C-bonds play a critical role in stabilizing the conformation in solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!