Glioblastoma (GBM) is the most common primary and aggressive tumour in brain cancer. Novel therapies, despite achievements in chemotherapy, radiation and surgical techniques, are needed to improve the treatment of GBM tumours and extend patients' survival. Gene delivery therapy mostly uses the viral vector, which causes serious adverse events in gene therapy. Graphene-based complexes can reduce the potential side effect of viral carries, with high efficiency of microRNA (miRNA) or antisense miRNA delivery to GBM cells. The objective of this study was to use graphene-based complexes to induce deregulation of miRNA level in GBM cancer cells and to regulate the selected gene expression involved in apoptosis. The complexes were characterised by Fourier transform infrared spectroscopy (FTIR), scanning transmission electron microscopy and zeta potential. The efficiency of miRNA delivery to the cancer cells was analysed by flow cytometry. The effect of the anticancer activity of graphene-based complexes functionalised by the miRNA sequence was analysed using 2,3--(2-methoxy-4-nitro-5-sulfophenyl)-2-tetrazolium-5-carboxyanilide salt (XTT) assays at the gene expression level. The results partly explain the mechanisms of miRNA deregulation stress, which is affected by graphene-based complexes together with the forced transport of mimic miR-124, miR-137 and antisense miR-21, -221 and -222 as an anticancer supportive therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510190 | PMC |
http://dx.doi.org/10.3390/molecules26195804 | DOI Listing |
J Control Release
January 2025
Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy; BioNanoMedicine Center NANOMIB, Università degli Studi di Milano-Bicocca, Italy. Electronic address:
Graphene oxide (GO) is an amphiphilic and versatile graphene-based nanomaterial that is extremely promising for targeted drug delivery, which aims to administer drugs in a spatially and temporally controlled manner. A typical GO nanocarrier features a polyethylene glycol coating and conjugation to an active targeting ligand. However, it is challenging to accurately model GO dots, because of their intrinsically complex and not unique structure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States.
Field-effect transistor (FET) biosensors have significantly attracted interest across various disciplines because of their high sensitivity, time-saving, and label-free characteristics. However, it remains a grand challenge to interface the FET biosensor with complex liquid media. Unlike standard liquid electrolytes containing purified protein content, directly exposing FET biosensors to complex biological fluids introduces significant sensing noise, which is caused by the abundance of nonspecific proteins, viruses, and bacteria that adsorb to the biosensor surfaces.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia.
Technological development has led to the need for materials able to block electromagnetic waves (EMWs) emitted from various devices. EMWs could negatively affect the working performance and lifetime of multiple instruments and measuring devices. New EMW shielding materials are being developed, while among nanomaterials, graphene-based composites have shown promising features.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.
Graphene oxide (GO) is widely used to prepare 2D laminar separation membranes because of its single atomic thickness and good processability. However, due to the tortuous transport path and excessive swelling effect, it is difficult to improve permeability, salt rejection, and stability of GO membranes simultaneously. Herein, we chemically laminated GO with covalent organic framework nanosheets (CONs) to fabricate membranes for fast and stable desalination.
View Article and Find Full Text PDFJ Adv Res
November 2024
State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China. Electronic address:
Introduction: Abnormal electrical activity of the heart following myocardial infarction (MI) may lead to heart failure or sudden cardiac death. Graphene-based conductive hydrogels can simulate the microenvironment of myocardial tissue and improve cardiac function post-MI. However, existing methods for preparing graphene and its derivatives suffer from drawbacks such as low purity, complex processes, and unclear structures, which limiting their biological applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!