The key role of trivalent manganese (Mn(III)) species in promoting sulfate radical-based advanced oxidation processes (SR-AOPs) has recently attracted increasing attention. This review provides a comprehensive summary of Mn(III) (oxyhydr)oxide-based catalysts used to activate peroxymonosulfate (PMS) and peroxydisulfate (PDS) in water. The crystal structures of different Mn(III) (oxyhydr)oxides (such as α-MnO, γ-MnOOH, and MnO) are first introduced. Then the impact of the catalyst structure and composition on the activation mechanisms are discussed, as well as the effects of solution pH and inorganic ions. In the Mn(III) (oxyhydr)oxide activated SR-AOPs systems, the activation mechanisms of PMS and PDS are different. For example, both radical (such as sulfate and hydroxyl radical) and non-radical (singlet oxygen) were generated by Mn(III) (oxyhydr)oxide activated PMS. In comparison, the activation of PDS by α-MnO and γ-MnOOH preferred to form the singlet oxygen and catalyst surface activated complex to remove the organic pollutants. Finally, research gaps are discussed to suggest future directions in context of applying radical-based advanced oxidation in wastewater treatment processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510277 | PMC |
http://dx.doi.org/10.3390/molecules26195748 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!