Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plant-derived monoterpenoids have been shown to possess various biological effects, providing a scientific basis for their potential usage as antibacterial agents. Therefore, considering problems surrounding bacteria's antibacterial resistance, the utilization of natural antimicrobial compounds such as monoterpenoids in different industries has gained much attention. The aim of this study was to fabricate and characterize various concentrations of plant-derived monoterpenoids, geraniol (G) and carvacrol (C), loaded into poly(lactic acid) (PLA) nanofibers via emulsion electrospinning. The antibacterial activities of the fabricated nanofibers were evaluated using three types of antibacterial assays (inhibition zone tests, live/dead bacterial cell assays, and antibacterial kinetic growth assays). Among the samples, 10 wt% carvacrol-loaded PLA nanofibers (C10) had the most bactericidal activity, with the widest inhibition zone of 5.26 cm and the highest visible dead bacteria using the inhibition zone test and live/dead bacterial cell assay. In order to quantitatively analyze the antibacterial activities of 5 wt% carvacrol-loaded PLA nanofibers (C5), C10, 5 wt% geraniol-loaded PLA nanofibers (G5), and 10 wt% geraniol-loaded PLA nanofibers (G10) against and , growth kinetic curves were analyzed using OD. For the results, we found that the antibacterial performance was as follows: C10 > C5 > G10 > G5. Overall, carvacrol or geraniol-loaded PLA nanofibers are promising antibacterial materials for improving fiber functionality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512816 | PMC |
http://dx.doi.org/10.3390/polym13193405 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!