The present paper documents and discusses research work associated with a newly designed passenger door structure demonstrator. The composite structure was manufactured from carbon-fiber-reinforced thermoplastic resin. A composite frame with a variable cross-section was designed, optimized, and fabricated using thermoforming technology. Both numerical simulations and experiments supported structural verification according to the damage tolerance philosophy; i.e., impact damage is presented. The Tsai-Wu and maximal stress criteria were used for damage analysis of the composite parts. Topological optimization of the metal hinges from the point of view of weight reduction was used. All expected parameters and proposed requirements of the mechanical properties were proved and completed. The door panel showed an expected numerically evaluated residual strength (ultimate structure load) as well as meeting airworthiness requirements. No impact damage propagation in the composite parts was observed during mechanical tests, even though visible impact damage was introduced into the structure. No significant difference between the numerical simulations and the experimentally measured total deformation was observed. Repeated deformation measurements during fatigue showed a nonlinear structure behavior. This can be attributed to the relaxation of thermoplastics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512071PMC
http://dx.doi.org/10.3390/polym13193394DOI Listing

Publication Analysis

Top Keywords

impact damage
12
passenger door
8
numerical simulations
8
composite parts
8
structure
5
damage
5
optimal design
4
design testing
4
testing thermoplastic
4
thermoplastic pressurized
4

Similar Publications

Background: In the 21st century, disasters (particularly earthquakes, which remain the leading cause of death) continue to be among the foremost issues requiring global emergency response. While the impact of advancing technologies on the environmental and human damage caused by earthquakes is still a subject of debate, search and rescue (SAR) teams and emergency departments (ED), specifically emergency physicians (EPs), play a crucial role in the most acute management of the effects of these earthquakes on human life. This study aims to examine the injury dynamics of two catastrophic earthquakes that occurred in Turkey 24 years apart from the perspective of EPs, utilizing archival records from the SAR teams in which EPs served.

View Article and Find Full Text PDF

Deep learning reveals diverging effects of altitude on aging.

Geroscience

January 2025

Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.

Aging is influenced by a complex interplay of multifarious factors, including an individual's genetics, environment, and lifestyle. Notably, high altitude may impact aging and age-related diseases through exposures such as hypoxia and ultraviolet (UV) radiation. To investigate this, we mined risk exposure data (summary exposure value), disease burden data (disability-adjusted life years (DALYs)), and death rates and life expectancy from the Global Health Data Exchange (GHDx) and National Data Management Center for Health of Ethiopia for each subnational region of Ethiopia, a country with considerable differences in the living altitude.

View Article and Find Full Text PDF

Surgical resection and postoperative adjuvant chemotherapy have enhanced the outlook for breast cancer patients. However, tumor relapse and serious side effects of chemotherapy continue to impact patients' quality of life. Designing injectable composite hydrogel made of biodegradable polymers providing sustained release of antiangiogenic and chemotherapeutic agents might play a vital role in elimination of cancer cells.

View Article and Find Full Text PDF

Introduction: In the environment, mycotoxins and fungicides frequently coexist, potentially causing synergistic risks to organisms. Epoxiconazole (EPO) and aflatoxin B1 (AFB1) are a common fungicide and mycotoxins, respectively, which are widely present in the environment and have toxic effects on multiple organs once entering the organism, but it is still unclear whether the co-exposure has a synergistic toxic effect.

Objectives: This study delves into the molecular mechanisms underlying the co-exposure to EPO and AFB1, emphasizing multi-organ toxicity in female zebrafish (F0 generation) and potential transgenerational impacts on the offspring embryos (F1 generation) through multi-omics approaches.

View Article and Find Full Text PDF

Biallelic variants in SREBF2 cause autosomal recessive spastic paraplegia.

J Genet Genomics

January 2025

Department of Medical Genetics and Center for Rare Diseases, the Second Affiliated Hospital of Zhejiang University School of Medicine, and Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, Zhejiang 310009, China; Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang 311100, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310012, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China; Lead contact. Electronic address:

Hereditary spastic paraplegias (HSPs) refer to a genetically and clinically heterogeneous group of neurodegenerative disorders characterized by the degeneration of motor neurons. To date, a significant number of patients still have not received a definite genetic diagnosis. Therefore, identifying unreported causative genes continues to be of great importance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!