Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms.

Polymers (Basel)

Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok 26120, Thailand.

Published: October 2021

The innovation of geopolymer concrete (GPC) plays a vital role not only in reducing the environmental threat but also as an exceptional material for sustainable development. The application of supervised machine learning (ML) algorithms to forecast the mechanical properties of concrete also has a significant role in developing the innovative environment in the field of civil engineering. This study was based on the use of the artificial neural network (ANN), boosting, and AdaBoost ML approaches, based on the python coding to predict the compressive strength (CS) of high calcium fly-ash-based GPC. The performance comparison of both the employed techniques in terms of prediction reveals that the ensemble ML approaches, AdaBoost, and boosting were more effective than the individual ML technique (ANN). The boosting indicates the highest value of R equals 0.96, and AdaBoost gives 0.93, while the ANN model was less accurate, indicating the coefficient of determination value equals 0.87. The lesser values of the errors, MAE, MSE, and RMSE of the boosting technique give 1.69 MPa, 4.16 MPa, and 2.04 MPa, respectively, indicating the high accuracy of the boosting algorithm. However, the statistical check of the errors (MAE, MSE, RMSE) and k-fold cross-validation method confirms the high precision of the boosting technique. In addition, the sensitivity analysis was also introduced to evaluate the contribution level of the input parameters towards the prediction of CS of GPC. The better accuracy can be achieved by incorporating other ensemble ML techniques such as AdaBoost, bagging, and gradient boosting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512145PMC
http://dx.doi.org/10.3390/polym13193389DOI Listing

Publication Analysis

Top Keywords

geopolymer concrete
8
compressive strength
8
machine learning
8
learning algorithms
8
ann boosting
8
errors mae
8
mae mse
8
mse rmse
8
boosting technique
8
boosting
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!