A novel nanomaterial, bacterial cellulose (BC), has become noteworthy recently due to its better physicochemical properties and biodegradability, which are desirable for various applications. Since cost is a significant limitation in the production of cellulose, current efforts are focused on the use of industrial waste as a cost-effective substrate for the synthesis of BC or microbial cellulose. The utilization of industrial wastes and byproduct streams as fermentation media could improve the cost-competitiveness of BC production. This paper examines the feasibility of using typical wastes generated by industry sectors as sources of nutrients (carbon and nitrogen) for the commercial-scale production of BC. Numerous preliminary findings in the literature data have revealed the potential to yield a high concentration of BC from various industrial wastes. These findings indicated the need to optimize culture conditions, aiming for improved large-scale production of BC from waste streams.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512337 | PMC |
http://dx.doi.org/10.3390/polym13193365 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.
Sulfur dioxide (SO), a pervasive air pollutant, poses significant environmental and health risks, necessitating advanced materials for its efficient capture. Nanoporous organic polymers (NOPs) have emerged as promising candidates; however, their development is often hindered by high synthesis temperatures, complex precursors, and limited SO selectivity. Herein, we report a room-temperature, cost-effective synthesis of carbazole-based nanoporous organic polymers (CNOPs) using 1,3,5-trioxane and paraldehyde, offering a significant advancement over traditional Friedel-Crafts alkylation methods.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Department of Economics, Hatay Mustafa Kemal University, Hatay, Turkey.
Waste has emerged as a pressing concern for the environment, primarily stemming from the processes of urbanization and industrialization. The substantial volumes of waste generated pose a serious threat to the environment, as they spread out harmful substances in the soil and release methane emissions into the atmosphere. To effectively address this issue, this study explores the impact of municipal and industrial waste, as well as waste-related innovation on the load capacity factor (LCF) from 2005 to 2020.
View Article and Find Full Text PDFAnal Methods
January 2025
Air Resource, Environmental Resource Planning and Management, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India.
Dioxins rank among the most hazardous persistent organic pollutants, presenting a serious threat due to their long environmental lifespan and capacity for bioaccumulation. This comprehensive review delves into the historical, chemical, and toxicological aspects of dioxins, spotlighting significant incidents such as the Seveso disaster and the repercussions of Agent Orange. The review offers a thorough analysis of the sources of dioxin formation, encompassing natural occurrences like volcanic eruptions and wildfires, alongside man-made activities such as industrial combustion and waste incineration.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Fayoum University, Fayoum, Egypt.
This research investigates the potential of utilizing types of construction waste as partial cement replacements within concrete formulations. Notably, granodiorite and ceramic powders were introduced at varying substitution ratios. The impact of these waste materials on the compressive strength and radiation shielding effectiveness of traditional concrete was evaluated under both ambient and elevated temperature conditions.
View Article and Find Full Text PDFWaste Manag
January 2025
Department of Industrial and Systems Engineering, Kyonggi University, Suwon, Republic of Korea. Electronic address:
This study identifies and analyzes issues within the management system of the waste home appliances free pickup service and seeks to enhance the system by using an object detection model. To overcome the limitations of manually inspecting approximately 5,000 collections per day, the YOLOv8 model was implemented. Photos for proof of collection, which were difficult to verify visually, were excluded from the image data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!