Poly(ethylene 2,5-furandicarboxylate), PEF and poly(ethylene terephthalate), PET, are two polyesters with close chemical structures. It leads to similar thermal, mechanical and barrier properties. In order to optimize their stretching, a strategy based on the time/temperature principle is used. The building of master curves, in the linear visco-elastic domain, allows the identification of the experimental conditions for which the two materials are in the same physical state. The initial physical state of the materials is important as, to fit with the industrial constrains, the polymers must reach high level of deformation, and develop strain induced crystallization (SIC). In this paper, the screening of the forming range is described, as well as the mechanical response depending on the stretching settings. Moreover, the same mechanical response can exist for PEF and PET if the same gap from the α-relaxation exists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512310PMC
http://dx.doi.org/10.3390/polym13193295DOI Listing

Publication Analysis

Top Keywords

pef pet
8
based time/temperature
8
physical state
8
mechanical response
8
comparative analysis
4
mechanical
4
analysis mechanical
4
mechanical behaviour
4
behaviour pef
4
pet uniaxial
4

Similar Publications

Packaging materials mainly serve the function of protecting products. The most common representative of this group is poly(ethylene terephthalate) (PET), which is not biodegradable and therefore, its waste might be burdensome to the environment. Thus, this work aims to develop outlines for obtaining polyester-based systems, preferably biobased ones, intended for the packaging industry and their detailed characterization.

View Article and Find Full Text PDF

Plastic waste is a major threat in our industrialized world and is driving research into bioplastics. The success of biobased polyethylene furanoate (PEF) as a viable alternative to polyethylene terephthalate (PET) of fossil origin will depend on designing effective enzymes to break it down, aiding its recycling. Here, a panel of fungal and bacterial cutinases were functionally expressed in a tandem yeast expression system based on and .

View Article and Find Full Text PDF

Discovered in 2016, the enzyme PETase, secreted by bacterial 201-F6, has an excellent hydrolytic activity toward poly(ethylene terephthalate) (PET) at room temperature, while it decreases at higher temperatures due to the low thermostability. Many variants have been engineered to overcome this limitation, which hinders industrial application. In this work, we systematically compare PETase wild-type (WT) and four mutants (DuraPETase, ThermoPETase, FastPETase, and HotPETase) using standard molecular dynamics (MD) simulations and unbinding free energy calculations.

View Article and Find Full Text PDF

Polyester plastics have brought great convenience to modern society. However, the continuous accumulation of their production increasingly threatens human health. Polyethylene terephthalate (PET) is one of the largest type of polyester plastics and its recycling is a major challenge.

View Article and Find Full Text PDF

In recent years, there has been significant research interest in the field of immunotherapy for non-small cell lung cancer (NSCLC) within the academic community. Given the observed variations in individual responses, despite similarities in histopathologic type, immunohistochemical index, TNM stage, or mutation status, the identification of a reliable biomarker for early prediction of therapeutic responses is of utmost importance. Conventional medical imaging techniques primarily focus on macroscopic tumor monitoring, which may no longer adequately fulfill the requirements of clinical diagnosis and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!