The aim of this research is to determine the relaxation and creep modulus of 3D printed materials, and the numerical research is based on the finite volume method. The basic material for determining these characteristics is ABS (acrylonitrile butadiene styrene) plastic as one of the most widely used polymeric materials in 3D printing. The experimental method for determining the relaxation functions involved the use of a creep test, in which a constant increase of the stress of the material was performed over time to a certain predetermined value. In addition to this test, DMA (dynamic mechanical analysis) analysis was used. Determination of unknown parameters of relaxation functions in analytical form was performed on the basis of the expression for the storage modulus in the frequency domain. The influence of temperature on the values of the relaxation modulus is considered through the determination of the shift factor. Shift factor is determined on the basis of a series of tests of the relaxation function at different constant temperatures. The shift factor is presented in the form of the WLF (Williams-Landel-Ferry) equation. After obtaining such experimentally determined viscoelastic characteristics with analytical expressions for relaxation modulus and shift factors, numerical analysis can be performed. For this numerical analysis, a mathematical model with an incremental approach was used, as developed in earlier works although with a certain modification. In the experimental analysis, the analytical expression for relaxation modulus in the form of the Prony series is used, and since it is the sum of exponential functions, this enables the derivation of a recursive algorithm for stress calculation. Numerical analysis was performed on several test cases and the results were compared with the results of the experiment and available analytical solutions. A good agreement was obtained between the results of the numerical simulation and the results of the experiment and analytical solutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512708PMC
http://dx.doi.org/10.3390/polym13193276DOI Listing

Publication Analysis

Top Keywords

relaxation modulus
12
shift factor
12
numerical analysis
12
materials printing
8
relaxation functions
8
analysis performed
8
experiment analytical
8
analytical solutions
8
relaxation
7
numerical
6

Similar Publications

Microwave Dielectric Properties and Defect Behavior of xTiO-(1-x)SiO Glass.

Materials (Basel)

January 2025

China Building Materials Academy, Beijing 100024, China.

xTiO-(1-x)SiO (x = 2.9~8.2 mol%) glass specimens were synthesized using the flame hydrolysis technique.

View Article and Find Full Text PDF

Objective: The diagnosis of early osteoarthritis when therapeutic interventions may be most effective at reversing cartilage degeneration presents a clinical challenge. We describe a Raman arthroscopic probe and spectral analysis that measures biomarkers reflective of the content of predominant cartilage ECM constituents-glycosaminoglycans (GAG), collagen, water-essential to cartilage function. We compare the capability of Raman-probe-derived biomarkers to predict functional properties of cartilage to quantitative MRI and histopathology assessments.

View Article and Find Full Text PDF

The single crystals of lead-free NaBiTiO were grown using the Czochralski method. The energy gaps determined from X-ray photoelectron spectroscopy (XPS) and optical measurements were approximately 2.92 eV.

View Article and Find Full Text PDF

This work is focused on the impact of temperature and deformation on the mechanical properties, specifically the elastic modulus () of the amorphous regions in semicrystalline polymers, using polypropylene as a case study. It has been shown that increasing temperature results in an decrease due to the enhanced mobility of polymer chains, triggered by the activation of α relaxation processes within the crystalline component. Consequently, rising temperature reduces the "stiffening" effect of the crystalline regions on the interlamellar layers.

View Article and Find Full Text PDF

Cartilaginous microtissues exhibit extreme resilience under compression with size-dependent mechanical properties.

Biomaterials

January 2025

Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; Skeletal Biology and Engineering Research, KU Leuven, ON1 Herestraat 49, PB 813, 3000, Leuven, Belgium. Electronic address:

Self-assembled cartilaginous microtissues provide a promising means of repairing challenging skeletal defects and connective tissues. However, despite their considerable promise in tissue engineering, the mechanical response of these engineered microtissues is not well understood. Here we examine the mechanical and viscoelastic response of progenitor cell aggregates formed from human primary periosteal cells and the resulting cartilaginous microtissues under large deformations as might be encountered in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!