Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Thermal interface materials (also known as thermal pads) are widely used as a crucial part to dissipate heat generated in miniaturized and integrated electronic components. Here, we systematically investigated the effects of small ceramic and metallic powders in rubbery thermal composite pads with a high content of aluminum oxide filler on the thermal conductivity of the composite pads. We optimized the compositions of aluminum oxide fillers with two different sizes in a polydimethylsiloxane (PDMS) matrix for rubbery composite pads with a high thermal conductivity. Based on the optimized compositions, zinc oxide powder or copper powder with an average size of 1 μm was used to replace 5 μm-sized aluminum oxide filler to examine the effects of the small ceramic and metallic powders, respectively, on the thermal conductivity of the composite pads. When zinc oxide powder was used as the replacement, the thermal conductivity of the rubbery composite pads decreased because more air bubbles were generated during the processing of the mixed paste with increased viscosity. On the other hand, when the copper powder was used as a replacement, a thermal conductivity of up to 2.466 W/m·K was achieved for the rubbery composite pads by optimizing the mixing composition. SEM images and EDS mapping confirmed that all fillers were evenly distributed in the rubbery composite pads.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513005 | PMC |
http://dx.doi.org/10.3390/polym13193259 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!