Poly (lactic acid) (PLA)-Poly (propylene carbonate) (PPC) block copolymer compatibilizers are produced in incompatible 70wt%PLA/PPC blend by initiating transesterification with addition of 1% of tetra butyl titanate (TBT) or by chain extension with addition of 2% of 2,4-toluene diisocyanate (TDI). The above blends can have much better mechanical properties than the blend without TBT and TDI. The elongation at break is dramatically larger (114% with 2% of TDI and 60% with 1% of TBT) than the blend without TDI and TBT, with a slightly lower mechanical strength. A small fraction of the copolymer is likely formed in the PLA/PPC blend with addition of TBT, and a significant amount of the copolymer can be made with addition of TDI. The copolymer produced with TDI has PPC as a major content (~70 wt%) and forms a miscible interphase with its own Tg. The crystallinity of the blend with TDI is significantly lower than the blend without TDI, as the PLA blocks of the copolymer in the interphase is hardly to crystallize. The average molecular weight increases significantly with addition of TDI, likely compensating the lower mechanical strength due to lower crystallinity. Material degradation can occur with addition of TBT, but it is very limited with 1% of TBT. However, compared with the blends without TBT, the PLA crystallinity of the blend with 1%TBT increases sharply during the cooling process, which likely compensates the loss of mechanical strength due to the slightly material degradation. The added TDI does not have any significant impact on PLA lamellar packing, but the addition of TBT can make PLA lamellar packing much less ordered, presumably resulted from much smaller PPC domains formed in the blend due to better compatibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512864 | PMC |
http://dx.doi.org/10.3390/polym13193245 | DOI Listing |
Materials (Basel)
September 2023
State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
In this study, polyol castor oil (CO) and toluene-2,4-diisocyanate (TDI) were selected to modify PBAT, and castor-oil-based polyurethane (COP) was produced in a PBAT matrix using melt-blending and hot-pressing technology to study the effect of network cross-linking structure on various properties of bio-based polyester PBAT, aiming to introduce CO and TDI to improve the mechanical properties of composite materials. The results showed that when the total addition of CO and TDI was 15%, and the ratio of the hydroxyl group of CO to the isocyanate group of TDI was 1:1, the mechanical properties were the best. The tensile strength of the composite was 86.
View Article and Find Full Text PDFMaterials (Basel)
June 2023
Department of Physical Science, University of Kabianga, Kericho P.O. Box 2030-20200, Kenya.
Lignin isolated from agricultural residues is a promising alternative for petroleum-based polymers as feedstocks in development of antimicrobial materials. A polymer blend based on silver nanoparticles and lignin-toluene diisocyanate film (AgNPs-Lg-TDIs) was generated from organosolv lignin and silver nanoparticles (AgNPs). Lignin was isolated from using acidified methanol and used to synthesize lignin capped silver nanoparticles.
View Article and Find Full Text PDFPolymers (Basel)
December 2022
Center NTI "Digital Materials Science: New Materials and Substances", Bauman Moscow State Technical University, 2nd Baumanskaya Str., 5/1, 105005 Moscow, Russia.
Polymers (Basel)
October 2021
Advanced Manufacturing Institute of Polymer Industry, Shenyang University of Chemical Technology, Shenyang 110142, China.
The difference in compatibility at the molecular level can lead to a change of microphase separation structure of thermoplastic polyurethanes blend systems, which will improve their thermal and mechanical properties. In this study, TDI-polyester based TPU was blended with MDI-polyether-based TPU and MDI-polyester based TPU, with different ratios. In the blend system, the obvious reduction of the melting temperature of the high-temperature TDI-polyester based TPU component indicates its hard segments can be mutually integrated with the other component.
View Article and Find Full Text PDFPolymers (Basel)
September 2021
Advanced Manufacturing Institute of Polymer Industry, Shenyang University of Chemical Technology, Shenyang 110142, China.
Poly (lactic acid) (PLA)-Poly (propylene carbonate) (PPC) block copolymer compatibilizers are produced in incompatible 70wt%PLA/PPC blend by initiating transesterification with addition of 1% of tetra butyl titanate (TBT) or by chain extension with addition of 2% of 2,4-toluene diisocyanate (TDI). The above blends can have much better mechanical properties than the blend without TBT and TDI. The elongation at break is dramatically larger (114% with 2% of TDI and 60% with 1% of TBT) than the blend without TDI and TBT, with a slightly lower mechanical strength.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!