Probe Standoff Optimization Method for Phased Array Ultrasonic TFM Imaging of Curved Parts.

Sensors (Basel)

Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada.

Published: October 2021

The reliability of the ultrasonic phased array total focusing method (TFM) imaging of parts with curved geometries depends on many factors, one being the probe standoff. Strong artifacts and resolution loss are introduced by some surface profile and standoff combinations, making it impossible to identify defects. This paper, therefore, introduces a probe standoff optimization method (PSOM) to mitigate such effects. Based on a point spread function analysis, the PSOM algorithm finds the standoff with the lowest main lobe width and side lobe level values. Validation experiments were conducted and the TFM imaging performance compared with the PSOM predictions. The experiments consisted of the inspection of concave and convex parts with amplitudes of 0, 5 and 15 λ, at 12 standoffs varying from 20 to 130 mm. Three internal side-drilled holes at different depths were used as targets. To investigate how the optimal probe standoff improves the TFM, two metrics were used: the signal-to-artifact ratio (SAR) and the array performance indicator (API). The PSF characteristics predicted by the PSOM agreed with the quality of TFM images. A considerable TFM improvement was demonstrated at the optimal standoff calculated by the PSOM. The API of a convex specimen's TFM was minimized, and the SAR gained up to 13 dB, while the image of a concave specimen gained up to 33 dB in SAR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512873PMC
http://dx.doi.org/10.3390/s21196665DOI Listing

Publication Analysis

Top Keywords

probe standoff
16
tfm imaging
12
standoff optimization
8
optimization method
8
phased array
8
tfm
7
standoff
6
psom
5
probe
4
method phased
4

Similar Publications

Covalent organic frameworks designed as chromatic sensors offer opportunities to probe biological interfaces, particularly when combined with biocompatible matrices. Particularly compelling is the prospect of chemical tomography - or the 3D spatial mapping of chemical detail within the complex environment of living systems. Herein, we demonstrate a chromic Covalent Organic Framework (COF) integrated within silk fibroin (SF) microneedles that probe plant vasculature, sense the alkalization of vascular fluid as a biomarker for drought stress, and provide a 3D in-vivo mapping of chemical gradients using smartphone technology.

View Article and Find Full Text PDF

We report the standoff/remote identification of post-consumer plastic waste by utilizing a low-cost and compact standoff laser-induced breakdown spectroscopy (ST-LIBS) detection system. A single plano-convex lens is used for collecting the optical emissions from the plasma at a standoff distance of 6.5 m.

View Article and Find Full Text PDF

Unlabelled: In this work, we study the jetting dynamics of individual cavitation bubbles using x-ray holographic imaging and high-speed optical shadowgraphy. The bubbles are induced by a focused infrared laser pulse in water near the surface of a flat, circular glass plate, and later probed with ultrashort x-ray pulses produced by an x-ray free-electron laser (XFEL). The holographic imaging can reveal essential information of the bubble interior that would otherwise not be accessible in the optical regime due to obscuration or diffraction.

View Article and Find Full Text PDF

Standoff Deep Ultraviolet Raman Spectrometer for Trace Detection.

Appl Spectrosc

February 2024

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

We developed a state-of-the-art, high-sensitivity, low-stray-light standoff deep-ultraviolet (DUV) Raman spectrometer for the trace detection of resonance Raman-enhanced chemical species. As an excitation source for Raman measurements, we utilized our recently developed, second-generation, miniaturized, diode-pumped, solid-state neodymium-doped gadolinium orthovanadate (Nd:GdVO) laser that generates quasi-continuous wave 228 nm light. This 228 nm excitation enhances the Raman intensities of vibrations of NO groups in explosive molecules, aromatic groups in biological molecules, and various aromatic hydrocarbons.

View Article and Find Full Text PDF

Optical sensors and sensing technologies are playing a more and more important role in our modern world. From micro-probes to large devices used in such diverse areas like medical diagnosis, defence, monitoring of industrial and environmental conditions, optics can be used in a variety of ways to achieve compact, low cost, stand-off sensing with extreme sensitivity and selectivity. Actually, the challenges to the design and functioning of an optical sensor for a particular application requires intimate knowledge of the optical, material, and environmental properties that can affect its performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!