Stumbling during gait is commonly encountered in patients who suffer from mild to serious walking problems, e.g., after stroke, in osteoarthritis, or amputees using a lower leg prosthesis. Instead of self-reporting, an objective assessment of the number of stumbles in daily life would inform clinicians more accurately and enable the evaluation of treatments that aim to achieve a safer walking pattern. An easy-to-use wearable might fulfill this need. The goal of the present study was to investigate whether a single inertial measurement unit (IMU) placed at the shank and machine learning algorithms could be used to detect and classify stumbling events in a dataset comprising of a wide variety of daily movements. Ten healthy test subjects were deliberately tripped by an unexpected and unseen obstacle while walking on a treadmill. The subjects stumbled a total of 276 times, both using an elevating recovery strategy and a lowering recovery strategy. Subjects also performed multiple Activities of Daily Living. During data processing, an event-defined window segmentation technique was used to trace high peaks in acceleration that could potentially be stumbles. In the reduced dataset, time windows were labelled with the aid of video annotation. Subsequently, discriminative features were extracted and fed to train seven different types of machine learning algorithms. Trained machine learning algorithms were validated using leave-one-subject-out cross-validation. Support Vector Machine (SVM) algorithms were most successful, and could detect and classify stumbles with 100% sensitivity, 100% specificity, and 96.7% accuracy in the independent testing dataset. The SVM algorithms were implemented in a user-friendly, freely available, stumble detection app named Stumblemeter. This work shows that stumble detection and classification based on SVM is accurate and ready to apply in clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513070 | PMC |
http://dx.doi.org/10.3390/s21196636 | DOI Listing |
Sci Rep
December 2024
The School of Nursing, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China.
Urban rail transit systems, represented by subways, have significantly alleviated the traffic pressure brought by urbanization and have addressed issues such as traffic congestion. However, as a commonly used construction method for subway tunnels, shield tunneling inevitably disturbs the surrounding soil, leading to uneven ground surface settlement, which can impact the safety of nearby buildings. Therefore, it is crucial to promptly obtain and predict the ground surface settlement induced by shield tunneling construction to enable safety warnings and evaluations.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Kyiv, Ukraine.
The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, 81442, Saudi Arabia.
This research article presents a thorough and all-encompassing examination of predictive models utilized in the estimation of viscosity for ionic liquid solutions. The study focuses on crucial input parameters, namely the type of cation, the type of anion, the temperature (measured in Kelvin), and the concentration of the ionic liquid (expressed in mol%). This study assesses three influential machine learning algorithms that are based on the Decision Tree methodology.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!