Numerous methods and devices are available for implant fixation in anterior cruciate ligament (ACL) reconstruction. Biomechanical data indicate high variability in fixation stability across different devices. This study aims to provide a better insight into measuring the structural characteristics and mechanical behavior of ACL implant fixations. Fourteen human tibial specimens with reconstructed ACLs were subjected to progressively increasing dynamic loading until failure. The motions of the tibia, the proximal and distal graft ends, as well as the testing frame and actuator, were continuously recorded via a motion tracking system. Significantly higher displacements of the machine actuator (1.0 mm at graft slippage onset, and 12.2 mm at ultimate load) were measured compared to the displacements of the proximal (0.8 and 4.3 mm, respectively) and distal graft (0.1 and 3.4 mm, respectively) ends. The displacements measured at different sites showed significant correlations. The provided data suggest significant and systematic inaccuracies in the stiffness and slippage of the fixation when using machine displacement, as commonly reported in the literature. The assessment of the distal graft displacement excludes the artifactual graft elongation, and most accurately reflects the graft slippage onset indicating clinical failure. Considering the high displacement at the ultimate load, the ultimate load could be used as a standardized variable to compare different fixation methods. However, the ultimate load alone is not sufficient to qualitatively describe fixation stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513052PMC
http://dx.doi.org/10.3390/s21196632DOI Listing

Publication Analysis

Top Keywords

ultimate load
16
fixation stability
12
distal graft
12
implant fixation
8
acl reconstruction
8
proximal distal
8
graft ends
8
graft slippage
8
slippage onset
8
fixation
6

Similar Publications

Purpose: This study aims to describe a fixation technique for coronoid fractures using suture buttons, and to biomechanically evaluate this technique in comparison to screw fixation as a time-zero pilot study.

Methods: An O'Driscoll type 2 anteromedial coronoid facet (AMCF) fracture was simulated in 20 fresh-frozen human elbows. The specimens were randomized into two groups and fracture fixation was performed with either a suture button system or a 3.

View Article and Find Full Text PDF

Drums are the core working mechanism of the coal mining machine for coal mining. The structural design level of the drum is crucial for mining efficiency and safety production. Traditional design methods not only have long design cycles and high costs, but also limited design capabilities.

View Article and Find Full Text PDF

Introduction And Hypothesis: Pelvic organ prolapse (POP) impacts women's health and quality of life. Post-surgery complications can be severe. This study uses rat models to replicate sacrocolpopexy and test materials for pelvic support, verifying the 4-week postoperative mortality rate, the mechanical properties of the mesh tissue, and the collagen content.

View Article and Find Full Text PDF

Purpose: To evaluate the maximal load to failure, cyclic displacement, stiffness, and modes of failure of onlay subpectoral biceps tenodesis with an intramedullary unicortical metal button (MB) versus an inlay, all-suture Caspari-Weber (CW) technique.

Methods: Sixteen matched paired human cadaveric proximal humeri were randomly allocated for subpectoral BT with either CW or MB using a high-strength suture (N = 16; 8 male, 8 female, mean age = 82.5 years, range 62-99 years).

View Article and Find Full Text PDF

This study investigates the impact of the weight and centre of mass (COM) position of Head-Mounted Displays (HMDs) on the subjective evaluation of users during prolonged wearing tasks. This study involved 88 participants completing 1860 sets of experiments under three conditions: sitting still, turning the head, and moving, providing subjective evaluations of wearing HMDs. A static torque testing device was used to simulate neck torque under flexion states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!