Motor imagery (MI)-based brain-computer interfaces have gained much attention in the last few years. They provide the ability to control external devices, such as prosthetic arms and wheelchairs, by using brain activities. Several researchers have reported the inter-communication of multiple brain regions during motor tasks, thus making it difficult to isolate one or two brain regions in which motor activities take place. Therefore, a deeper understanding of the brain's neural patterns is important for BCI in order to provide more useful and insightful features. Thus, brain connectivity provides a promising approach to solving the stated shortcomings by considering inter-channel/region relationships during motor imagination. This study used effective connectivity in the brain in terms of the partial directed coherence (PDC) and directed transfer function (DTF) as intensively unconventional feature sets for motor imagery (MI) classification. MANOVA-based analysis was performed to identify statistically significant connectivity pairs. Furthermore, the study sought to predict MI patterns by using four classification algorithms-an SVM, KNN, decision tree, and probabilistic neural network. The study provides a comparative analysis of all of the classification methods using two-class MI data extracted from the PhysioNet EEG database. The proposed techniques based on a probabilistic neural network (PNN) as a classifier and PDC as a feature set outperformed the other classification and feature extraction techniques with a superior classification accuracy and a lower error rate. The research findings indicate that when the PDC was used as a feature set, the PNN attained the greatest overall average accuracy of 98.65%, whereas the same classifier was used to attain the greatest accuracy of 82.81% with the DTF. This study validates the activation of multiple brain regions during a motor task by achieving better classification outcomes through brain connectivity as compared to conventional features. Since the PDC outperformed the DTF as a feature set with its superior classification accuracy and low error rate, it has great potential for application in MI-based brain-computer interfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512774 | PMC |
http://dx.doi.org/10.3390/s21196570 | DOI Listing |
Sensors (Basel)
December 2024
Instituto de Automática e Informática Industrial, Universitat Politècnica de València, 46022 Valencia, Spain.
In this paper, a bibliometric review is conducted on brain-computer interfaces (BCI) in non-invasive paradigms like motor imagery (MI) and steady-state visually evoked potentials (SSVEP) for applications in rehabilitation and robotics. An exploratory and descriptive approach is used in the analysis. Computational tools such as the biblioshiny application for R-Bibliometrix and VOSViewer are employed to generate data on years, sources, authors, affiliation, country, documents, co-author, co-citation, and co-occurrence.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electronics and Communication Engineering, Istanbul Technical University, 34467 Istanbul, Istanbul, Turkey.
Classifying Motor Imaging (MI) Electroencephalogram (EEG) signals is of vital importance for Brain-Computer Interface (BCI) systems, but challenges remain. A key challenge is to reduce the number of channels to improve flexibility, portability, and computational efficiency, especially in multi-class scenarios where more channels are needed for accurate classification. This study demonstrates that combining Electrooculogram (EOG) channels with a reduced set of EEG channels is more effective than relying on a large number of EEG channels alone.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.
Background: Motor imagery is the mental representation of a movement without physical execution. When motor imagery is performed to enhance motor learning and performance, participants must reach a temporal congruence between the imagined and actual movement execution. Identifying factors that can influence this capacity could enhance the effectiveness of motor imagery programs.
View Article and Find Full Text PDFBrain Behav
January 2025
School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.
Background: Different modes of motor acquisition, including motor execution (ME), motor imagery (MI), action observation (AO), and mirror visual feedback (MVF), are often used when learning new motor behavior and in clinical rehabilitation.
Purpose: The aim of this study was to investigate differences in brain activation during different motor acquisition modes among healthy young adults.
Methods: This cross-sectional study recruited 29 healthy young adults.
Front Neurol
December 2024
Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel.
Children with attention deficit hyperactivity disorder (ADHD) exhibit various degrees of motor and cognitive impairments in fine and gross motor skills. These impairments impact social functioning, while also hindering academic achievement, self-esteem, and participation. Specifically, motor impairments are not fully addressed by current therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!