A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Improvement of the Fire Detection and Classification Method Using YOLOv3 for Surveillance Systems. | LitMetric

Currently, sensor-based systems for fire detection are widely used worldwide. Further research has shown that camera-based fire detection systems achieve much better results than sensor-based methods. In this study, we present a method for real-time high-speed fire detection using deep learning. A new special convolutional neural network was developed to detect fire regions using the existing YOLOv3 algorithm. Due to the fact that our real-time fire detector cameras were built on a Banana Pi M3 board, we adapted the YOLOv3 network to the board level. Firstly, we tested the latest versions of YOLO algorithms to select the appropriate algorithm and used it in our study for fire detection. The default versions of the YOLO approach have very low accuracy after training and testing in fire detection cases. We selected the YOLOv3 network to improve and use it for the successful detection and warning of fire disasters. By modifying the algorithm, we recorded the results of a rapid and high-precision detection of fire, during both day and night, irrespective of the shape and size. Another advantage is that the algorithm is capable of detecting fires that are 1 m long and 0.3 m wide at a distance of 50 m. Experimental results showed that the proposed method successfully detected fire candidate areas and achieved a seamless classification performance compared to other conventional fire detection frameworks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511986PMC
http://dx.doi.org/10.3390/s21196519DOI Listing

Publication Analysis

Top Keywords

fire detection
28
fire
11
detection
9
yolov3 network
8
versions yolo
8
improvement fire
4
detection classification
4
classification method
4
yolov3
4
method yolov3
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!