Sensor Selection Framework for Designing Fault Diagnostics System.

Sensors (Basel)

Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, State College, PA 16801, USA.

Published: September 2021

In a world of rapidly changing technologies, reliance on complex engineered systems has become substantial. Interactions associated with such systems as well as associated manufacturing processes also continue to evolve and grow in complexity. Consider how the complexity of manufacturing processes makes engineered systems vulnerable to cascading and escalating failures; truly a highly complex and evolving system of systems. Maintaining quality and reliability requires considerations during product development, manufacturing processes, and more. Monitoring the health of the complex system while in operation/use is imperative. These considerations have compelled designers to explore fault-mechanism models and to develop corresponding countermeasures. Increasingly, there has been a reliance on embedded sensors to aid in prognosticating failures, to reduce downtime, during manufacture and system operation. However, the accuracy of estimating the remaining useful life of the system is highly dependent on the quality of the data obtained. This can be enhanced by increasing the number of sensors used, according to information theory. However, adding sensors increases total costs with the cost of the sensors and the costs associated with information-gathering procedures. Determining the optimal number of sensors, associated operating and data acquisition costs, and sensor-configuration are nontrivial. It is also imperative to avoid redundant information due to the presence of additional sensors and the efficient display of information to the decision-maker. Therefore, it is necessary to select a subset of sensors that not only reduce the cost but are also informative. While progress has been made in the sensor selection process, it is limited to either the type of the sensor, number of sensors or both. Such approaches do not address specifications of the required sensors which are integral to the sensor selection process. This paper addresses these shortcomings through a new method, OFCCaTS, to avoid the increased cost associated with health monitoring and to improve its accuracy. The proposed method utilizes a scalable multi-objective framework for sensor selection to maximize fault detection rate while minimizing the total cost of sensors. A wind turbine gearbox is considered to demonstrate the efficacy of the proposed framework.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512200PMC
http://dx.doi.org/10.3390/s21196470DOI Listing

Publication Analysis

Top Keywords

sensor selection
16
manufacturing processes
12
number sensors
12
sensors
10
engineered systems
8
cost sensors
8
selection process
8
sensor
5
system
5
associated
5

Similar Publications

We report a bithiophene-based fluorescence probe BDT (2,2'-(((1 E, 1'E)-[2,2'-bithiophene]-5,5'-diylbis(methaneylylidene))bis(azaneylylidene))bis(4-(tert-butyl)phenol)) for recognizing ClO. BDT selectively responded to ClO, leading to a blue fluorescence enhancement in a mixture of DMF/HEPES buffer (9:1, v/v). Importantly, BDT showed an ultrafast response (within 1 s) to ClO among the fluorescent turn-on chemosensors based on bithiophene.

View Article and Find Full Text PDF

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Michael and Schiff-Base Reactions-Assisted Fluorescence Sensor Based on the MOF Nanosheet Microspheres for the Effective Discrimination and Detection of Hydroquinone and Catechol.

Anal Chem

January 2025

Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China.

A novel sensing platform was constructed for the recognition and identification of dihydroxybenzene isomers based on the MOF-0.02TEA fluorescence sensor with the morphology of nanosheet microspheres through coordination modulation. Based on the sensing principle that the amino group on the MOF-0.

View Article and Find Full Text PDF

Accurate 6D object pose estimation is critical for autonomous docking. To address the inefficiencies and inaccuracies associated with maximal cliques-based pose estimation methods, we propose a fast 6D pose estimation algorithm that integrates feature space and space compatibility constraints. The algorithm reduces the graph size by employing Laplacian filtering to resample high-frequency signal nodes.

View Article and Find Full Text PDF

A Comparison Study of Person Identification Using IR Array Sensors and LiDAR.

Sensors (Basel)

January 2025

Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.

Person identification is a critical task in applications such as security and surveillance, requiring reliable systems that perform robustly under diverse conditions. This study evaluates the Vision Transformer (ViT) and ResNet34 models across three modalities-RGB, thermal, and depth-using datasets collected with infrared array sensors and LiDAR sensors in controlled scenarios and varying resolutions (16 × 12 to 640 × 480) to explore their effectiveness in person identification. Preprocessing techniques, including YOLO-based cropping, were employed to improve subject isolation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!