A Novel High-Q Dual-Mass MEMS Tuning Fork Gyroscope Based on 3D Wafer-Level Packaging.

Sensors (Basel)

Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.

Published: September 2021

Tuning fork gyroscopes (TFGs) are promising for potential high-precision applications. This work proposes and experimentally demonstrates a novel high-Q dual-mass tuning fork microelectromechanical system (MEMS) gyroscope utilizing three-dimensional (3D) packaging techniques. Except for two symmetrically decoupled proof masses (PM) with synchronization structures, a symmetrically decoupled lever structure is designed to force the antiparallel, antiphase drive mode motion and eliminate low frequency spurious modes. Thermoelastic damping (TED) and anchor loss are greatly reduced by the linearly coupled, momentum- and torque-balanced antiphase sense mode. Moreover, a novel 3D packaging technique is used to realize high Q-factors. A composite substrate encapsulation cap, fabricated by through-silicon-via (TSV) and glass-in-silicon (GIS) reflow processes, is anodically bonded to the wafer-scale sensing structures. A self-developed control circuit is adopted to realize loop control and characterize gyroscope performances. It is shown that a high-reliability electrical connection, together with a high air impermeability package, can be fulfilled with this 3D packaging technique. Furthermore, the Q-factors of the drive and sense modes reach up to 51,947 and 49,249, respectively. This TFG realizes a wide measurement range of ±1800 °/s and a high resolution of 0.1°/s with a scale factor nonlinearity of 720 ppm after automatic mode matching. In addition, long-term zero-rate output (ZRO) drift can be effectively suppressed by temperature compensation, inducing a small angle random walk (ARW) of 0.923°/√h and a low bias instability (BI) of 9.270°/h.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512718PMC
http://dx.doi.org/10.3390/s21196428DOI Listing

Publication Analysis

Top Keywords

tuning fork
12
novel high-q
8
high-q dual-mass
8
symmetrically decoupled
8
packaging technique
8
dual-mass mems
4
mems tuning
4
fork gyroscope
4
gyroscope based
4
based wafer-level
4

Similar Publications

The magneto-mechanical coupling of multiphase magnetorheological elastomers.

J Phys Condens Matter

January 2025

Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, Virginia, 24061-0131, UNITED STATES.

Magnetorheological elastomers (MREs) are soft magnetic composites that achieve tunable changes in stiffness and energy response in the presence of a magnetic field. Rigid particle composite (RC) MREs have been studied for decades for their potential applications to automotive dampers and robotic systems. Recently, magnetic fluid composite (FC) MREs have been developed which utilize magnetic fluids as inclusions to elastomers.

View Article and Find Full Text PDF

Tuning Fork Scanning Electrochemical Cell Microscopy for Resolving Morphological and Redox Properties of Single Ag Nanowires.

J Phys Chem Lett

January 2025

Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States.

We report a Tuning Fork Scanning Electrochemical Cell Microscopy (TF-SECCM) technique for providing morphological and electrochemical information on single redox-active entities. This new operation configuration of SECCM utilizes an electrolyte-filled nanopipette tip mounted onto a tuning fork force sensor to obtain a precise tip-sample distance control and surface morphological mapping capabilities. Redox activities of regions of interest (ROIs) can be investigated by scanning electrode potential by moving the nanopipette to any target regions while maintaining the constant force engagement of the tip with the sample.

View Article and Find Full Text PDF

The misuse of personalized listening devices (PLDs) resulting in noise-induced hearing loss (NIHL) has become a public health concern, especially among youths, including medical students. The occupational use of PLDs that produce high-intensity sounds amplifies the danger of cochlear deterioration and high-frequency NIHL especially when used in noisy environments. This study aims to evaluate the incidence and trends of NIHL among medical students using PLDs.

View Article and Find Full Text PDF

Development of a novel latent deoxyribonucleic acid detection technique for crime scene investigation using quartz tuning fork-based biosensor technology.

Forensic Sci Int

December 2024

Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia. Electronic address:

The forensic Deoxyribonucleic Acid (DNA) fingerprinting is a tool for investigating crime scenes by identifying/tracing criminals and linking crime scenes. However, in cases where experts are unable to detect and identify any biological traces or human-derived cells at the crime scene or while testing the samples in the laboratories, all the advantages offered by forensic laboratories lose their significance. It becomes a waste of time, effort, and resources allocated to these laboratories.

View Article and Find Full Text PDF

Traditional beat frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) are limited by short energy accumulation times and the necessity of a decay period, leading to weaker signals and longer measurement cycles. Herein, we present a novel optomechanical energy-enhanced (OEE-) BF-QEPAS technique for fast and sensitive gas sensing. Our approach employs periodic pulse-width modulation (PWM) of the laser signal with an optimized duty cycle, maintaining the quartz tuning fork's (QTF) output at a stable steady-state level by applying stimulus signals at each half-period and allowing free vibration in alternate half-periods to minimize energy dissipation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!