The sudden increase in patients with severe COVID-19 has obliged doctors to make admissions to intensive care units (ICUs) in health care practices where capacity is exceeded by the demand. To help with difficult triage decisions, we proposed an integration system Xtreme Gradient Boosting (XGBoost) classifier and Analytic Hierarchy Process (AHP) to assist health authorities in identifying patients' priorities to be admitted into ICUs according to the findings of the biological laboratory investigation for patients with COVID-19. The Xtreme Gradient Boosting (XGBoost) classifier was used to decide whether or not they should admit patients into ICUs, before applying them to an AHP for admissions' priority ranking for ICUs. The 38 commonly used clinical variables were considered and their contributions were determined by the Shapley's Additive explanations (SHAP) approach. In this research, five types of classifier algorithms were compared: Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighborhood (KNN), Random Forest (RF), and Artificial Neural Network (ANN), to evaluate the XGBoost performance, while the AHP system compared its results with a committee formed from experienced clinicians. The proposed (XGBoost) classifier achieved a high prediction accuracy as it could discriminate between patients with COVID-19 who need ICU admission and those who do not with accuracy, sensitivity, and specificity rates of 97%, 96%, and 96% respectively, while the AHP system results were close to experienced clinicians' decisions for determining the priority of patients that need to be admitted to the ICU. Eventually, medical sectors can use the suggested framework to classify patients with COVID-19 who require ICU admission and prioritize them based on integrated AHP methodologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512533 | PMC |
http://dx.doi.org/10.3390/s21196379 | DOI Listing |
BMC Oral Health
January 2025
Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.
Background: In the last years, artificial intelligence (AI) has contributed to improving healthcare including dentistry. The objective of this study was to develop a machine learning (ML) model for early childhood caries (ECC) prediction by identifying crucial health behaviours within mother-child pairs.
Methods: For the analysis, we utilized a representative sample of 724 mothers with children under six years in Bangladesh.
Biomedicine (Taipei)
December 2024
Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
Background: One of the most challenging cancers is triple-negative breast cancer, which is subdivided into many molecular subtypes. Due to the high degree of heterogeneity, the role of precision medicine remains challenging. With the use of machine learning (ML)-guided gene selection, the differential gene expression analysis can be optimized, and eventually, the process of precision medicine can see great advancement through biomarker discovery.
View Article and Find Full Text PDFBiomedicine (Taipei)
December 2024
School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
Introduction: Our previous research demonstrated that a large language model (LLM) based on the transformer architecture, specifically the MegaMolBART encoder with an XGBoost classifier, effectively predicts the blood-brain barrier (BBB) permeability of compounds. However, the permeability coefficients of compounds that can traverse this barrier remain unclear. Additionally, the absorption, distribution, metabolism, and excretion (ADME) characteristics of substances obtained from the Natural Product Research Laboratory (NPRL) at China Medical University Hospital (CMUH) have not yet been determined.
View Article and Find Full Text PDFJAMIA Open
February 2025
Center for Biomedical Informatics, Regenstrief Institute, Indianapolis, IN 46202, United States.
Objective: Measurement of health-related social needs (HRSNs) is complex. We sought to develop and validate computable phenotypes (CPs) using structured electronic health record (EHR) data for food insecurity, housing instability, financial insecurity, transportation barriers, and a composite-type measure of these, using human-defined rule-based and machine learning (ML) classifier approaches.
Materials And Methods: We collected HRSN surveys as the reference standard and obtained EHR data from 1550 patients in 3 health systems from 2 states.
PLoS One
January 2025
Department of Information Systems, College of Computer Sciences and Information Technology (CCSIT), King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia.
Diabetes, a chronic metabolic condition characterised by persistently high blood sugar levels, necessitates early detection to mitigate its risks. Inadequate dietary choices can contribute to various health complications, emphasising the importance of personalised nutrition interventions. However, real-time selection of diets tailored to individual nutritional needs is challenging because of the intricate nature of foods and the abundance of dietary sources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!