The ultra-dense network (UDN) is one of the key technologies in fifth generation (5G) networks. It is used to enhance the system capacity issue by deploying small cells at high density. In 5G UDNs, the cell selection process requires high computational complexity, so it is considered to be an open NP-hard problem. Internet of Vehicles (IoV) technology has become a new trend that aims to connect vehicles, people, infrastructure and networks to improve a transportation system. In this paper, we propose a machine-learning and IoV-based cell selection scheme called Artificial Neural Network Cell Selection (ANN-CS). It aims to select the small cell that has the longest dwell time. A feed-forward back-propagation ANN (FFBP-ANN) was trained to perform the selection task, based on moving vehicle information. Real datasets of vehicles and base stations (BSs), collected in Los Angeles, were used for training and evaluation purposes. Simulation results show that the trained ANN model has high accuracy, with a very low percentage of errors. In addition, the proposed ANN-CS decreases the handover rate by up to 33.33% and increases the dwell time by up to 15.47%, thereby minimizing the number of unsuccessful and unnecessary handovers (HOs). Furthermore, it led to an enhancement in terms of the downlink throughput achieved by vehicles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512188 | PMC |
http://dx.doi.org/10.3390/s21196361 | DOI Listing |
Sci Rep
January 2025
Depto de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31.270-901, Brazil.
Magnetoliposomes containing magnetite, soy lecithin, stigmasterol, and beta-sitosterol of the mean size minor than 160 nm were obtained by a scalable and green process using autoclave and sonication without organic solvents. The formation, size of the liposome, linkage, and encapsulation of the magnetite were evaluated by Cryo-TEM. The stability of magnetoliposomes after storage for 6 months at 4 °C was improved by liposome size, the ability of soy lecithin to preserve the magnetite phase against oxidation, pH, polydispersity index, and zeta potential.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
Hydrogen sulfide (HS) is an endogenous gasotransmitter with cardioprotective and antiviral effects. In this work, new cysteine-selective nucleoside-HS-donor hybrid molecules were prepared by conjugating nucleoside biomolecules with a thiol-activatable dithioacetyl group. 5'-Dithioacetate derivatives were synthesized from the canonical nucleosides (uridine, adenosine, cytidine, guanosine and thymidine), and the putative 5'-thio metabolites were also produced from uridine and adenosine.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Marine and Freshwater Solutions, Finnish Environment Institute, Latokartanonkaari 11, 00790, Helsinki, Finland.
Car tyres are considered to release a substantial amount of particles to the environment. Due to the high emission volumes and the chemical risks associated with tyre rubber, there is an urgent need to quantify their ecotoxicological effects. The effects of exposure to particles derived from end-of-life tyres were investigated on the Baltic clam (Macoma balthica), which is one of the key invertebrate species living in the soft-bottom sediments of the northern Baltic Sea.
View Article and Find Full Text PDFCell Death Differ
January 2025
Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), LMU University Hospital, Munich, Germany.
The cell death receptor FAS and its ligand (FASLG) play crucial roles in the selection of B cells during the germinal center (GC) reaction. Failure to eliminate potentially harmful B cells via FAS can lead to lymphoproliferation and the development of B cell malignancies. The classic form of follicular lymphoma (FL) is a prototypic GC-derived B cell malignancy, characterized by the t(14;18)(q32;q21)IGH::BCL2 translocation and overexpression of antiapoptotic BCL2.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China.
Precise and long-term electroanalysis at the single-cell level is crucial for the accurate diagnosis and monitoring of brain diseases. The reliable protection in areas outside the signal acquisition points at sharp ultramicroelectrode (UME) tips has a significant impact on the sensitivity, fidelity, and stability of intracellular neural signal recording. However, it is difficult for existing UMEs to achieve controllable exposure of the tip functional structure, which affects their ability to resist environmental interference and shield noise, resulting in unsatisfactory signal-to-noise ratio and signal fidelity of intracellular recordings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!