In this paper a new low-cost stretchable coplanar capacitive sensor for liquid level sensing is presented. It has been 3D-printed by employing commercial thermoplastic polyurethane (TPU) and conductive materials and using a fused filament fabrication (FFF) process for monolithic fabrication. The sensor presents high linearity and good repeatability when measuring sunflower oil level. Experiments were performed to analyse the behaviour of the developed sensor when applying bending stimuli, in order to verify its flexibility, and a thermal characterization was performed in the temperature range from 10 °C to 40 °C to evaluate its effect on sunflower oil level measurement. The experimental results showed negligible sensitivity of the sensor to bending stimuli, whereas the thermal characterization produced a model describing the relationship between capacitance, temperature, and oil level, allowing temperature compensation in oil level measurement. The different temperature cycles allowed to quantify the main sources of uncertainty, and their effect on level measurement was evaluated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512386PMC
http://dx.doi.org/10.3390/s21196324DOI Listing

Publication Analysis

Top Keywords

oil level
16
thermal characterization
12
level measurement
12
coplanar capacitive
8
sunflower oil
8
bending stimuli
8
level
6
characterization 3d-printed
4
3d-printed bendable
4
bendable coplanar
4

Similar Publications

Various practical strategies have been employed to mitigate the detrimental effects of water deficit stress on plants such as application of nano-stimulants. Nanosilicon plays a crucial role in alleviating the deleterious impacts of both abiotic and biotic stresses in plants by modulating various phyto-morphological and physiological processes. This study aimed to examine the combined effects of drought stress and nanosilicon application on the morphological traits and essential oil content and compositions of hemp (Cannabis sativa L.

View Article and Find Full Text PDF

Preparation, characterization, and application of composite oleogels based on whey protein isolate and sodium alginate.

Int J Biol Macromol

January 2025

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Jiaxing Institute of Future Food, Jiaxing 314050, China. Electronic address:

Oleogels with solid-like properties can serve as substitutes for fats, thereby avoiding the consumption of high levels of saturated fatty acids. In this study, we developed a protein-polysaccharide composite network oleogel using whey protein isolate (WPI) and sodium alginate (SA) through an emulsion-templated method. Analysis with Fourier Transform Infrared (FTIR) spectroscopy confirmed the presence of hydrogen bonds and van der Waals forces between WPI and SA, which bolstered the oleogel's structure.

View Article and Find Full Text PDF

Background: Chronic soft tissue injury is characterized by sterile inflammation and pain. Gua sha with Masanggoubang oil (GSMO) treatment has been found to possess anti-inflammatory and analgesic effects.

Objectives: To explore the mechanism of GSMO in chronic soft tissue injuries.

View Article and Find Full Text PDF

The increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.

View Article and Find Full Text PDF

The kinetics, oil migration pattern and the role of frying media during immersion frying of '', a dairy dessert, at the microstructural level were studied using confocal laser scanning microscopy (CLSM). After 6 min of frying, the depth of oil migration in increased from 0 to 3.16 mm in clarified butter (locally called '') and 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!