Introduction: Lung cancer is the second most frequent malignancy worldwide, but its aetiology is still unclear. Inflammatory cytokines and Th cells, including Th17, are now emerging as being involved in NSCLC pathways, thus postulating a role of IL-17 in tumour angiogenesis by stimulating the vascular endothelial growth factor and the release of nitric oxide. Despite the fact that many biomarkers are used for chest malignancy diagnosis, data on FeNO levels and inflammatory cytokines in NSCLC are still few. Our study aimed to evaluate the relationship between pulmonary nitric oxide production and VEGF and Th17-related cytokines in the EBC of patients affected by early-stage NSCLC.

Methods: FeNO measurement and lung function tests were performed in both patients affected by NCSLC and controls; EBC samples were also taken, and Th1 (IL-1, IL-6, IL-12, IFN-g, TNF-a), Th17 (IL-17, IL-23) and Th2 (IL-4, IL-5, IL-13) related cytokines were measured.

Results: Th1 and Th17-related cytokines in EBC, except for IFN-gamma and TNF-alpha, were significantly higher in patients than in healthy controls, whereas no differences were seen for Th2-related cytokines. FeNO at the flow rate of 50 mL/s, JawNO and CalvNO levels were significantly higher in patients affected by NSCLC compared to controls. Significant correlations were found between FeNO 50 mL/s and IL-17, IL-1 and VEGF. JawNO levels positively correlated with IL-6, IL-17 and VEGF. No correlations were found between FeNO and Th2-related cytokines.

Conclusion: This is the first report assessing a relationship between FeNO levels and Th17-related cytokines in the EBC of patients affected by early-stage NSCLC. IL-17, which could promote angiogenesis through the VEGF pathway, might be indirectly responsible for the increased lung production of NO in patients with NSCLC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509139PMC
http://dx.doi.org/10.3390/jcm10194572DOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
th17-related cytokines
12
cytokines ebc
12
oxide production
8
lung cancer
8
inflammatory cytokines
8
feno levels
8
ebc patients
8
patients early-stage
8
higher patients
8

Similar Publications

Deciphering the impact of NOS-derived NO on nitrogen metabolism and carbon flux in the heterocytous cyanobacterium Aphanizomenon flos-aquae 2012/KM1/D3.

Plant Physiol Biochem

January 2025

Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:

Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.

View Article and Find Full Text PDF

Objective: The pathophysiology of delayed cerebral ischemia (DCI) is not fully elucidated. The lack of accurate diagnostic tools increases the probability of delayed diagnosis and timely treatment. The authors assessed the relationship of 8-iso-prostaglandin F2α (F2-IsoP) and oxidative stress biomarkers, nitric oxide synthase 3 (NOS3) and nicotinamide adenine dinucleotide phosphate (NADPH), with DCI after aneurysmal subarachnoid hemorrhage (aSAH).

View Article and Find Full Text PDF

The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.

View Article and Find Full Text PDF

Macrophage metabolism is closely linked to their phenotype and function, which is why there is growing interest in studying the metabolic reprogramming of macrophages. Bioactive glass (BG) S53P4 is a bioactive material used especially in bone applications. Additionally, BG S53P4 has been shown to affect macrophages, but the mechanisms through which the possible immunomodulatory effects are conveyed remain unclear.

View Article and Find Full Text PDF

Immunomodulatory activity of Trypanosoma cruzi recombinant antigen combination TSA-1-C4 and Tc24-C4 induce activation of macrophages and CD8 T cells.

Parasitol Res

January 2025

Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40 Colonia Inalámbrica, Mérida, Yucatán, C.P. 97069, Mexico.

Chagas disease is a chronic infection caused by the protozoan parasite, Trypanosoma cruzi, with limited benefits of the currently available anti-parasitic chemotherapeutic approaches to halt the progression of heart disease. Recombinant TSA-1-C4 and Tc24-C4 proteins have been developed as promising antigen candidates for therapeutic vaccines, leading to propose them in combination as a bivalent recombinant protein strategy. In this study, we evaluated the immunomodulatory effect of the combined TSA-1-C4 and Tc24-C4 recombinant proteins by in vitro assays using murine macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!